Operations on strictly local languages, Theory of Computation

Assignment Help:

The class of Strictly Local Languages (in general) is closed under

• intersection but is not closed under

• union

• complement

• concatenation

• Kleene- and positive closure

Proof: For intersection, we can adapt the construction and proof for the SL2 case again to get closure under intersection for SLk. This is still not quite enough for SL in general, since one of the languages may be in SLi and the other in SLj for some i = j. Here we can use the hierarchy theorem to show that, supposing i < j, the SLi language is also in SLj . Then the adapted construction will establish that their intersection is in SL .

For non-closure under union (and consequently under complement) we can use the same counterexample as we did in the SL2 case:

1844_Operations on Strictly Local Languages.png

To see that this is not in SLk for any k we can use the pair

1771_Operations on Strictly Local Languages1.png

which will yield abk-1 a under k-local suffix substitution closure.

2435_Operations on Strictly Local Languages2.png

For non-closure under concatenation we can use the counterexample

The two languages being concatenated are in SL2, hence in SLk for all k ≥ 2 but their concatenation is not in SLk for any k, as we showed in the example above.


Related Discussions:- Operations on strictly local languages

Non - sl languages, Application of the general suffix substitution closure ...

Application of the general suffix substitution closure theorem is slightly more complicated than application of the specific k-local versions. In the specific versions, all we had

Possibility of recognizing the palindrome language, Computer has a single F...

Computer has a single FIFO queue of ?xed precision unsigned integers with the length of the queue unbounded. You can use access methods similar to those in the third model. In this

Computer achitecture, what is a bus and draw a single bus structure

what is a bus and draw a single bus structure

Emptiness problem, The Emptiness Problem is the problem of deciding if a gi...

The Emptiness Problem is the problem of deciding if a given regular language is empty (= ∅). Theorem 4 (Emptiness) The Emptiness Problem for Regular Languages is decidable. P

Automaton for finite languages, We can then specify any language in the cla...

We can then specify any language in the class of languages by specifying a particular automaton in the class of automata. We do that by specifying values for the parameters of the

Sketch an algorithm for recognizing language, Suppose A = (Σ, T) is an SL 2...

Suppose A = (Σ, T) is an SL 2 automaton. Sketch an algorithm for recognizing L(A) by, in essence, implementing the automaton. Your algorithm should work with the particular automa

What is pumping lemma for regular sets, State & prove pumping lemma for reg...

State & prove pumping lemma for regular set. Show that for the language L={ap |p is a prime} is not regular

First model of computation, Computer has a single unbounded precision count...

Computer has a single unbounded precision counter which you can only increment, decrement and test for zero. (You may assume that it is initially zero or you may include an explici

Prism algorithm, what exactly is this and how is it implemented and how to ...

what exactly is this and how is it implemented and how to prove its correctness, completeness...

Find regular grammar : a(a+b)*(ab*+ba*)b, Find the Regular Grammar for the ...

Find the Regular Grammar for the following Regular Expression:                    a(a+b)*(ab*+ba*)b.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd