Operations on strictly local languages, Theory of Computation

Assignment Help:

The class of Strictly Local Languages (in general) is closed under

• intersection but is not closed under

• union

• complement

• concatenation

• Kleene- and positive closure

Proof: For intersection, we can adapt the construction and proof for the SL2 case again to get closure under intersection for SLk. This is still not quite enough for SL in general, since one of the languages may be in SLi and the other in SLj for some i = j. Here we can use the hierarchy theorem to show that, supposing i < j, the SLi language is also in SLj . Then the adapted construction will establish that their intersection is in SL .

For non-closure under union (and consequently under complement) we can use the same counterexample as we did in the SL2 case:

1844_Operations on Strictly Local Languages.png

To see that this is not in SLk for any k we can use the pair

1771_Operations on Strictly Local Languages1.png

which will yield abk-1 a under k-local suffix substitution closure.

2435_Operations on Strictly Local Languages2.png

For non-closure under concatenation we can use the counterexample

The two languages being concatenated are in SL2, hence in SLk for all k ≥ 2 but their concatenation is not in SLk for any k, as we showed in the example above.


Related Discussions:- Operations on strictly local languages

Theory of computation, Computations are deliberate for processing informati...

Computations are deliberate for processing information. Computability theory was discovered in the 1930s, and extended in the 1950s and 1960s. Its basic ideas have become part of

Answer, And what this money. Invovle who it involves and the fact of,how we...

And what this money. Invovle who it involves and the fact of,how we got itself identified candidate and not withstanding time date location. That shouts me media And answers who''v

Defining strictly local automata, One of the first issues to resolve, when ...

One of the first issues to resolve, when exploring any mechanism for defining languages is the question of how to go about constructing instances of the mechanism which define part

Kleene Closure, 1. Does above all''s properties can be used to prove a lang...

1. Does above all''s properties can be used to prove a language regular? 2..which of the properties can be used to prove a language regular and which of these not? 3..Identify one

Decision problems, In Exercise 9 you showed that the recognition problem an...

In Exercise 9 you showed that the recognition problem and universal recognition problem for SL2 are decidable. We can use the structure of Myhill graphs to show that other problems

Myhill-nerode, Theorem (Myhill-Nerode) A language L ⊆ Σ is recognizable iff...

Theorem (Myhill-Nerode) A language L ⊆ Σ is recognizable iff ≡L partitions Σ* into ?nitely many Nerode equivalence classes. Proof: For the "only if" direction (that every recogn

Non deterministic finite state automaton, Automaton (NFA) (with ε-transitio...

Automaton (NFA) (with ε-transitions) is a 5-tuple: (Q,Σ, δ, q 0 , F i where Q, Σ, q 0 and F are as in a DFA and T ⊆ Q × Q × (Σ ∪ {ε}). We must also modify the de?nitions of th

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd