Operations on strictly local languages, Theory of Computation

Assignment Help:

The class of Strictly Local Languages (in general) is closed under

• intersection but is not closed under

• union

• complement

• concatenation

• Kleene- and positive closure

Proof: For intersection, we can adapt the construction and proof for the SL2 case again to get closure under intersection for SLk. This is still not quite enough for SL in general, since one of the languages may be in SLi and the other in SLj for some i = j. Here we can use the hierarchy theorem to show that, supposing i < j, the SLi language is also in SLj . Then the adapted construction will establish that their intersection is in SL .

For non-closure under union (and consequently under complement) we can use the same counterexample as we did in the SL2 case:

1844_Operations on Strictly Local Languages.png

To see that this is not in SLk for any k we can use the pair

1771_Operations on Strictly Local Languages1.png

which will yield abk-1 a under k-local suffix substitution closure.

2435_Operations on Strictly Local Languages2.png

For non-closure under concatenation we can use the counterexample

The two languages being concatenated are in SL2, hence in SLk for all k ≥ 2 but their concatenation is not in SLk for any k, as we showed in the example above.


Related Discussions:- Operations on strictly local languages

Kleene closure, One might assume that non-closure under concatenation would...

One might assume that non-closure under concatenation would imply non closure under both Kleene- and positive closure, since the concatenation of a language with itself is included

Pumping lemma constant, a) Let n be the pumping lemma constant. Then if L i...

a) Let n be the pumping lemma constant. Then if L is regular, PL implies that s can be decomposed into xyz, |y| > 0, |xy| ≤n, such that xy i z is in L for all i ≥0. Since the le

Strictly local languages, We have now de?ned classes of k-local languages f...

We have now de?ned classes of k-local languages for all k ≥ 2. Together, these classes form the Strictly Local Languages in general. De?nition (Strictly Local Languages) A langu

Turing machine, prove following function is turing computable? f(m)={m-2,if...

prove following function is turing computable? f(m)={m-2,if m>2, {1,if

Transition graphs, We represented SLk automata as Myhill graphs, directed g...

We represented SLk automata as Myhill graphs, directed graphs in which the nodes were labeled with (k-1)-factors of alphabet symbols (along with a node labeled ‘?' and one labeled

Bonds, . On July 1, 2010, Harris Co. issued 6,000 bonds at $1,000 each. The...

. On July 1, 2010, Harris Co. issued 6,000 bonds at $1,000 each. The bonds paid interest semiannually at 5%. The bonds had a term of 20 years. At the time of issuance, the market r

Kleenes theorem, All that distinguishes the de?nition of the class of Regul...

All that distinguishes the de?nition of the class of Regular languages from that of the class of Star-Free languages is that the former is closed under Kleene closure while the lat

Local suffix substitution closure, The k-local Myhill graphs provide an eas...

The k-local Myhill graphs provide an easy means to generalize the suffix substitution closure property for the strictly k-local languages. Lemma (k-Local Suffix Substitution Clo

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd