Operations on strictly local languages, Theory of Computation

Assignment Help:

The class of Strictly Local Languages (in general) is closed under

• intersection but is not closed under

• union

• complement

• concatenation

• Kleene- and positive closure

Proof: For intersection, we can adapt the construction and proof for the SL2 case again to get closure under intersection for SLk. This is still not quite enough for SL in general, since one of the languages may be in SLi and the other in SLj for some i = j. Here we can use the hierarchy theorem to show that, supposing i < j, the SLi language is also in SLj . Then the adapted construction will establish that their intersection is in SL .

For non-closure under union (and consequently under complement) we can use the same counterexample as we did in the SL2 case:

1844_Operations on Strictly Local Languages.png

To see that this is not in SLk for any k we can use the pair

1771_Operations on Strictly Local Languages1.png

which will yield abk-1 a under k-local suffix substitution closure.

2435_Operations on Strictly Local Languages2.png

For non-closure under concatenation we can use the counterexample

The two languages being concatenated are in SL2, hence in SLk for all k ≥ 2 but their concatenation is not in SLk for any k, as we showed in the example above.


Related Discussions:- Operations on strictly local languages

Assignment, Consider a water bottle vending machine as a finite–state autom...

Consider a water bottle vending machine as a finite–state automaton. This machine is designed to accept coins of Rs. 2 and 5 only. It dispenses a single water bottle as soon as the

Pumping lemma, For every regular language there is a constant n depending o...

For every regular language there is a constant n depending only on L such that, for all strings x ∈ L if |x| ≥ n then there are strings u, v and w such that 1. x = uvw, 2. |u

Automata, As we are primarily concerned with questions of what is and what ...

As we are primarily concerned with questions of what is and what is not computable relative to some particular model of computation, we will usually base our explorations of langua

Synthesis theorem, Kleene called this the Synthesis theorem because his (an...

Kleene called this the Synthesis theorem because his (and your) proof gives an effective procedure for synthesizing an automaton that recognizes the language denoted by any given r

Describe the algorithm and draw the transition diagram, 1. Simulate a TM wi...

1. Simulate a TM with infinite tape on both ends using a two-track TM with finite storage 2. Prove the following language is non-Turing recognizable using the diagnolization

Abstract model of computation, When we say "solved algorithmically" we are ...

When we say "solved algorithmically" we are not asking about a speci?c programming language, in fact one of the theorems in computability is that essentially all reasonable program

Local and recognizable languages, We developed the idea of FSA by generaliz...

We developed the idea of FSA by generalizing LTk transition graphs. Not surprisingly, then, every LTk transition graph is also the transition graph of a FSA (in fact a DFA)-the one

Equivalence of nfas, It is not hard to see that ε-transitions do not add to...

It is not hard to see that ε-transitions do not add to the accepting power of the model. The underlying idea is that whenever an ID (q, σ  v) directly computes another (p, v) via

Qbasic, Ask question #Minimum 100 words accepte

Ask question #Minimum 100 words accepte

NP complete, I want a proof for any NP complete problem

I want a proof for any NP complete problem

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd