Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
The class of Strictly Local Languages (in general) is closed under
• intersection but is not closed under
• union
• complement
• concatenation
• Kleene- and positive closure
Proof: For intersection, we can adapt the construction and proof for the SL2 case again to get closure under intersection for SLk. This is still not quite enough for SL in general, since one of the languages may be in SLi and the other in SLj for some i = j. Here we can use the hierarchy theorem to show that, supposing i < j, the SLi language is also in SLj . Then the adapted construction will establish that their intersection is in SL .
For non-closure under union (and consequently under complement) we can use the same counterexample as we did in the SL2 case:
To see that this is not in SLk for any k we can use the pair
which will yield abk-1 a under k-local suffix substitution closure.
For non-closure under concatenation we can use the counterexample
The two languages being concatenated are in SL2, hence in SLk for all k ≥ 2 but their concatenation is not in SLk for any k, as we showed in the example above.
It is not hard to see that ε-transitions do not add to the accepting power of the model. The underlying idea is that whenever an ID (q, σ v) directly computes another (p, v) via
Explain Theory of Computation ,Overview of DFA,NFA, CFG, PDA, Turing Machine, Regular Language, Context Free Language, Pumping Lemma, Context Sensitive Language, Chomsky Normal For
write grammer to produce all mathematical expressions in c.
Exercise Show, using Suffix Substitution Closure, that L 3 . L 3 ∈ SL 2 . Explain how it can be the case that L 3 . L 3 ∈ SL 2 , while L 3 . L 3 ⊆ L + 3 and L + 3 ∈ SL
Give DFA''s accepting the following languages over the alphabet {0,1}: i. The set of all strings beginning with a 1 that, when interpreted as a binary integer, is a multiple of 5.
designing DFA
When we study computability we are studying problems in an abstract sense. For example, addition is the problem of, having been given two numbers, returning a third number that is
We represented SLk automata as Myhill graphs, directed graphs in which the nodes were labeled with (k-1)-factors of alphabet symbols (along with a node labeled ‘?' and one labeled
The fact that the Recognition Problem is decidable gives us another algorithm for deciding Emptiness. The pumping lemma tells us that if every string x ∈ L(A) which has length grea
Automata and Compiler (1) [25 marks] Let N be the last two digits of your student number. Design a finite automaton that accepts the language of strings that end with the last f
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd