Operations on b-trees, Data Structure & Algorithms

Assignment Help:

Operations on B-Trees

Given are various operations which can be performed on B-Trees:

  • Search
  • Create
  • Insert

B-Tree does effort to minimize disk access and the nodes are usually stored on disk

All the nodes are supposed to be stored into secondary storage instead of primary storage. All references to a given node are preceded through a read operation. Likewise, once a node is changed and it is no longer required, it has to be written out to secondary storage with write operation.

Given is the algorithm for searching a B-tree:

B-Tree Search (x, k)

i < - 1

while i < = n [x] and k > keyi[x]

do i ← i + 1

if i < = n [x] and k = key1 [x]

then return (x, i)

if leaf [x]

then return NIL

else Disk - Read (ci[x])

return B - Tree Search (Ci[x], k)

The search operation is alike to binary tree. Instead of selecting between a left and right child as in binary tree, a B-tree search have to make an n-way choice.

The right child is selected by performing a linear search of the values into the node. After determining the value greater than or equal to desired value, the child pointer to the instantaneous left to that value is followed.

The exact running time of search operation based upon the height of the tree. Given is the algorithm for the creation of a B-tree:

B-Tree Create (T)

x ← Allocate-Node ( )

 Leaf [x] ← True

n [x] ← 0

Disk-write (x)

root [T] ← x

 

The above denoted algorithm creates an empty B-tree through allocating a new root which has no keys and is a leaf node.

Given is the algorithm for insertion into a B-tree:

B-Tree Insert (T,K)

r ← root (T)

if n[r] = 2t - 1

then S ← Allocate-Node ( )

root[T] ← S

leaf [S] ← FALSE

n[S] ← 0

C1 ← r

B-Tree-Split-Child (s, I, r)

B-Tree-Insert-Non full (s, k)

else

B - Tree-Insert-Non full (r, k)

To carry on an insertion on B-tree, the proper node for the key has to be located. Next, the key has to be inserted into the node.

If the node is not full prior to the insertion, then no special action is needed.

If node is full, then the node has to be split to make room for the new key. As splitting the node results in moving one key to the parent node, the parent node ha not be full. Else, another split operation is required.

This procedure may repeat all the way up to the root and may need splitting the root node.


Related Discussions:- Operations on b-trees

Tic Tac Toe game , Book to refer: Introduction to Algorithms, 3rd Ed, by Cl...

Book to refer: Introduction to Algorithms, 3rd Ed, by Clifford Stein, Thomas H. Cormen, Ronald Rivest, Charles E. Leiserson Question: Tic Tac Toe game -Design a GUI and implement

Find a minimum cost spanning arborescence rooted, Find a minimum cost spann...

Find a minimum cost spanning arborescence rooted at r for the digraph shown below, using the final algorithm shown in class. Please show your work, and also give a final diagram wh

Which is the most suitable data type, Problem 1. You are asked to store...

Problem 1. You are asked to store Names of all 100 students of class A in your Learning Centre. Which data type will you use? What is its syntax? Explaining the data typ

What is algorithm, What is Algorithm A finite sequence of steps for a...

What is Algorithm A finite sequence of steps for accomplishing some computational task. An algorithm should Have steps which are simple and definite enough to be done

Four applications or implementation of the stack, Q. Write down any four ap...

Q. Write down any four applications or implementation of the stack.                                     Ans. (i)       The Conversion of infix to postfix form (ii)

How to measure the algorithm efficiency, How to measure the algorithm's eff...

How to measure the algorithm's efficiency? It is logical to examine the algorithm's efficiency as a function of some parameter n showing the algorithm's input size. Instance

Illustrate the intervals in mathematics, Illustrate the intervals in mathem...

Illustrate the intervals in mathematics Carrier set of a Range of T is the set of all sets of values v ∈ T such that for some start value s ∈ T and end value e ∈ T, either s ≤

Structures for complete undirected graphs, Q. Draw  the structures of compl...

Q. Draw  the structures of complete  undirected  graphs  on  one,  two,  three,  four  and  five vertices also prove that the number of edges in an n vertex complete graph is n(n-1

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd