Operations on b-trees, Data Structure & Algorithms

Assignment Help:

Operations on B-Trees

Given are various operations which can be performed on B-Trees:

  • Search
  • Create
  • Insert

B-Tree does effort to minimize disk access and the nodes are usually stored on disk

All the nodes are supposed to be stored into secondary storage instead of primary storage. All references to a given node are preceded through a read operation. Likewise, once a node is changed and it is no longer required, it has to be written out to secondary storage with write operation.

Given is the algorithm for searching a B-tree:

B-Tree Search (x, k)

i < - 1

while i < = n [x] and k > keyi[x]

do i ← i + 1

if i < = n [x] and k = key1 [x]

then return (x, i)

if leaf [x]

then return NIL

else Disk - Read (ci[x])

return B - Tree Search (Ci[x], k)

The search operation is alike to binary tree. Instead of selecting between a left and right child as in binary tree, a B-tree search have to make an n-way choice.

The right child is selected by performing a linear search of the values into the node. After determining the value greater than or equal to desired value, the child pointer to the instantaneous left to that value is followed.

The exact running time of search operation based upon the height of the tree. Given is the algorithm for the creation of a B-tree:

B-Tree Create (T)

x ← Allocate-Node ( )

 Leaf [x] ← True

n [x] ← 0

Disk-write (x)

root [T] ← x

 

The above denoted algorithm creates an empty B-tree through allocating a new root which has no keys and is a leaf node.

Given is the algorithm for insertion into a B-tree:

B-Tree Insert (T,K)

r ← root (T)

if n[r] = 2t - 1

then S ← Allocate-Node ( )

root[T] ← S

leaf [S] ← FALSE

n[S] ← 0

C1 ← r

B-Tree-Split-Child (s, I, r)

B-Tree-Insert-Non full (s, k)

else

B - Tree-Insert-Non full (r, k)

To carry on an insertion on B-tree, the proper node for the key has to be located. Next, the key has to be inserted into the node.

If the node is not full prior to the insertion, then no special action is needed.

If node is full, then the node has to be split to make room for the new key. As splitting the node results in moving one key to the parent node, the parent node ha not be full. Else, another split operation is required.

This procedure may repeat all the way up to the root and may need splitting the root node.


Related Discussions:- Operations on b-trees

Complexity of algorithm, The simplest implementation of the Dijkstra's algo...

The simplest implementation of the Dijkstra's algorithm stores vertices of set Q into an ordinary linked list or array, and operation Extract-Min(Q) is just a linear search through

Kruskals algorithm, Krushkal's algorithm uses the concept of forest of tree...

Krushkal's algorithm uses the concept of forest of trees. At first the forest contains n single node trees (and no edges). At each of the step, we add on one (the cheapest one) edg

If a node having two children is deleted from a binary tree, If a node havi...

If a node having two children is deleted from a binary tree, it is replaced by?? Inorder successor

Division-remainder hashing, According to this, key value is divided by any ...

According to this, key value is divided by any fitting number, generally a prime number, and the division of remainder is utilized as the address for the record. The choice of s

Write an algorithm to find outputs number of cars, A company is carrying ou...

A company is carrying out a survey by observing traffic at a road junction. Every time a car, bus or lorry passed by road junction it was noted down. 10 000 vehicles were counted d

Define abstract data type & column major ordering for arrays, Q1. Define th...

Q1. Define the following terms: (i) Abstract data type. (ii) Column major ordering for arrays. (iii)  Row major ordering for arrays. Q2. Explain the following: (i) A

Implement the physat algorithm, The first assignment in this course require...

The first assignment in this course required you to acquire data to enable you to implement the PHYSAT algorithm (Alvain et al. 2005, Alvain et al. 2008) in this second assignment

Assignment, How do I submit a three page assignment

How do I submit a three page assignment

C++ function, Write c++ function to traverse the threaded binary tree in in...

Write c++ function to traverse the threaded binary tree in inorder traversal

Recursion, difference between recursion and iteration

difference between recursion and iteration

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd