Operations on b-trees, Data Structure & Algorithms

Assignment Help:

Operations on B-Trees

Given are various operations which can be performed on B-Trees:

  • Search
  • Create
  • Insert

B-Tree does effort to minimize disk access and the nodes are usually stored on disk

All the nodes are supposed to be stored into secondary storage instead of primary storage. All references to a given node are preceded through a read operation. Likewise, once a node is changed and it is no longer required, it has to be written out to secondary storage with write operation.

Given is the algorithm for searching a B-tree:

B-Tree Search (x, k)

i < - 1

while i < = n [x] and k > keyi[x]

do i ← i + 1

if i < = n [x] and k = key1 [x]

then return (x, i)

if leaf [x]

then return NIL

else Disk - Read (ci[x])

return B - Tree Search (Ci[x], k)

The search operation is alike to binary tree. Instead of selecting between a left and right child as in binary tree, a B-tree search have to make an n-way choice.

The right child is selected by performing a linear search of the values into the node. After determining the value greater than or equal to desired value, the child pointer to the instantaneous left to that value is followed.

The exact running time of search operation based upon the height of the tree. Given is the algorithm for the creation of a B-tree:

B-Tree Create (T)

x ← Allocate-Node ( )

 Leaf [x] ← True

n [x] ← 0

Disk-write (x)

root [T] ← x

 

The above denoted algorithm creates an empty B-tree through allocating a new root which has no keys and is a leaf node.

Given is the algorithm for insertion into a B-tree:

B-Tree Insert (T,K)

r ← root (T)

if n[r] = 2t - 1

then S ← Allocate-Node ( )

root[T] ← S

leaf [S] ← FALSE

n[S] ← 0

C1 ← r

B-Tree-Split-Child (s, I, r)

B-Tree-Insert-Non full (s, k)

else

B - Tree-Insert-Non full (r, k)

To carry on an insertion on B-tree, the proper node for the key has to be located. Next, the key has to be inserted into the node.

If the node is not full prior to the insertion, then no special action is needed.

If node is full, then the node has to be split to make room for the new key. As splitting the node results in moving one key to the parent node, the parent node ha not be full. Else, another split operation is required.

This procedure may repeat all the way up to the root and may need splitting the root node.


Related Discussions:- Operations on b-trees

Write functions for both addition and subtraction, You will write functions...

You will write functions for both addition and subtraction of two numbers encoded in your data structure. These functions should not be hard to write. Remember how you add and subt

Total impedent of the circuit, an electrical student designed a circuit in...

an electrical student designed a circuit in which the impedence in one part of a series circuit is 2+j8 ohms and the impedent is another part of the circuit is 4-j60 ohm mm program

Double linked list, In a doubly linked list, also called as 2 way list, eac...

In a doubly linked list, also called as 2 way list, each node is divided into 3 parts. The first part is called previous pointer field. It contains the address of the preceding

C++, #What is the pointer

#What is the pointer

Explain optimal binary search trees, Explain Optimal Binary Search Trees ...

Explain Optimal Binary Search Trees One of the principal application of Binary Search Tree is to execute the operation of searching. If probabilities of searching for elements

Explain Hashing, What do you mean by hashing? Hashing gives the direct ...

What do you mean by hashing? Hashing gives the direct access of record from the file no matter where the record is in the file. This is possible with the help of a hashing func

Algorithm, write an algorithm for the gpa of six students

write an algorithm for the gpa of six students

Context sensitive f1 help on a field, In what ways we can get the context s...

In what ways we can get the context sensitive F1 help on a field?' Data element documentation. Data element additional text in screen painter. Using the process on help r

Define a tree and list its properties, QUESTION (a) Define a tree and l...

QUESTION (a) Define a tree and list its properties. (b) By showing all your workings, draw the spanning tree for the following graph based on the Breadth-First-Search algori

FIRST function in the compiler construction, I need a recursive algorithm t...

I need a recursive algorithm to implement the FIRST function to any grammar

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd