Operations on b-trees, Data Structure & Algorithms

Assignment Help:

Operations on B-Trees

Given are various operations which can be performed on B-Trees:

  • Search
  • Create
  • Insert

B-Tree does effort to minimize disk access and the nodes are usually stored on disk

All the nodes are supposed to be stored into secondary storage instead of primary storage. All references to a given node are preceded through a read operation. Likewise, once a node is changed and it is no longer required, it has to be written out to secondary storage with write operation.

Given is the algorithm for searching a B-tree:

B-Tree Search (x, k)

i < - 1

while i < = n [x] and k > keyi[x]

do i ← i + 1

if i < = n [x] and k = key1 [x]

then return (x, i)

if leaf [x]

then return NIL

else Disk - Read (ci[x])

return B - Tree Search (Ci[x], k)

The search operation is alike to binary tree. Instead of selecting between a left and right child as in binary tree, a B-tree search have to make an n-way choice.

The right child is selected by performing a linear search of the values into the node. After determining the value greater than or equal to desired value, the child pointer to the instantaneous left to that value is followed.

The exact running time of search operation based upon the height of the tree. Given is the algorithm for the creation of a B-tree:

B-Tree Create (T)

x ← Allocate-Node ( )

 Leaf [x] ← True

n [x] ← 0

Disk-write (x)

root [T] ← x

 

The above denoted algorithm creates an empty B-tree through allocating a new root which has no keys and is a leaf node.

Given is the algorithm for insertion into a B-tree:

B-Tree Insert (T,K)

r ← root (T)

if n[r] = 2t - 1

then S ← Allocate-Node ( )

root[T] ← S

leaf [S] ← FALSE

n[S] ← 0

C1 ← r

B-Tree-Split-Child (s, I, r)

B-Tree-Insert-Non full (s, k)

else

B - Tree-Insert-Non full (r, k)

To carry on an insertion on B-tree, the proper node for the key has to be located. Next, the key has to be inserted into the node.

If the node is not full prior to the insertion, then no special action is needed.

If node is full, then the node has to be split to make room for the new key. As splitting the node results in moving one key to the parent node, the parent node ha not be full. Else, another split operation is required.

This procedure may repeat all the way up to the root and may need splitting the root node.


Related Discussions:- Operations on b-trees

Array, how to define the size of array

how to define the size of array

Program segment for deletion of any element from the queue, Program segment...

Program segment for deletion of any element from the queue delete() { int delvalue = 0; if (front == NULL) printf("Queue Empty"); { delvalue = front->value;

Basic concept of the primitive data structures, Q. Explain the basic concep...

Q. Explain the basic concept of the primitive data structures.                                             Ans. The concept of P r i m i t i ve Data

Quick sort, This is the most extensively used internal sorting algorithm. I...

This is the most extensively used internal sorting algorithm. In its fundamental form, it was invented by C.A.R. Hoare in the year of 1960. Its popularity lies in the easiness of i

Explain how the shuttle sort algorithm works, Question 1 Explain how th...

Question 1 Explain how the shuttle sort algorithm works by making use of the following list of integers:11, 4, 2, 8, 5, 33, 7, 3, 1, 6. Show all the steps. Question 2

Time complexity, The  total  of  time  needed  by  an algorithm to run to i...

The  total  of  time  needed  by  an algorithm to run to its completion is termed as time complexity. The asymptotic running time of an algorithm is given in terms of functions. Th

C++, 7. String manipulation 7.a Write a C Program using following strin...

7. String manipulation 7.a Write a C Program using following string manipulation functions a) strcpy b) strncpy c) strcmp d) strncmp e) strlen f) strcat

#title.structured programming, what do you understand by structured program...

what do you understand by structured programming?explain with eg. top down and bottem up programming technique

What is the best case complexity of quick sort, What is the best case compl...

What is the best case complexity of quick sort In the best case complexity, the pivot is in the middle.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd