Operations on b-trees, Data Structure & Algorithms

Assignment Help:

Operations on B-Trees

Given are various operations which can be performed on B-Trees:

  • Search
  • Create
  • Insert

B-Tree does effort to minimize disk access and the nodes are usually stored on disk

All the nodes are supposed to be stored into secondary storage instead of primary storage. All references to a given node are preceded through a read operation. Likewise, once a node is changed and it is no longer required, it has to be written out to secondary storage with write operation.

Given is the algorithm for searching a B-tree:

B-Tree Search (x, k)

i < - 1

while i < = n [x] and k > keyi[x]

do i ← i + 1

if i < = n [x] and k = key1 [x]

then return (x, i)

if leaf [x]

then return NIL

else Disk - Read (ci[x])

return B - Tree Search (Ci[x], k)

The search operation is alike to binary tree. Instead of selecting between a left and right child as in binary tree, a B-tree search have to make an n-way choice.

The right child is selected by performing a linear search of the values into the node. After determining the value greater than or equal to desired value, the child pointer to the instantaneous left to that value is followed.

The exact running time of search operation based upon the height of the tree. Given is the algorithm for the creation of a B-tree:

B-Tree Create (T)

x ← Allocate-Node ( )

 Leaf [x] ← True

n [x] ← 0

Disk-write (x)

root [T] ← x

 

The above denoted algorithm creates an empty B-tree through allocating a new root which has no keys and is a leaf node.

Given is the algorithm for insertion into a B-tree:

B-Tree Insert (T,K)

r ← root (T)

if n[r] = 2t - 1

then S ← Allocate-Node ( )

root[T] ← S

leaf [S] ← FALSE

n[S] ← 0

C1 ← r

B-Tree-Split-Child (s, I, r)

B-Tree-Insert-Non full (s, k)

else

B - Tree-Insert-Non full (r, k)

To carry on an insertion on B-tree, the proper node for the key has to be located. Next, the key has to be inserted into the node.

If the node is not full prior to the insertion, then no special action is needed.

If node is full, then the node has to be split to make room for the new key. As splitting the node results in moving one key to the parent node, the parent node ha not be full. Else, another split operation is required.

This procedure may repeat all the way up to the root and may need splitting the root node.


Related Discussions:- Operations on b-trees

Storing street addresses with doubly linked lists, Write a C++ program with...

Write a C++ program with header and source les to store street addresses using the Doubly Linked List ADT. Modify the Node class from Lab Assignment 3 so that it becomes a node in

Insertion into a red-black tree, The insertion procedure in a red-black tre...

The insertion procedure in a red-black tree is similar to a binary search tree i.e., the insertion proceeds in a similar manner but after insertion of nodes x into the tree T, we c

Relative and direct files, Each data record contains a fixed place in a rel...

Each data record contains a fixed place in a relative file. Each record ought to have associated with it in integer key value which will help identify this slot. Therefore, this ke

Linked List Variations, Part1: Deque and Bag Implementation First, complet...

Part1: Deque and Bag Implementation First, complete the Linked List Implementation of the Deque (as in Worksheet 19) and Bag ADTs (Worksheet 22). Files Needed: linkedList.c Linke

Define about the structure - container, Define about the Structure - Contai...

Define about the Structure - Container - Some containers hold elements in some sort of structure, and some don't. Containers with no structure include bags and sets. Containe

Draw the process flow diagram, Draw the process flow diagram: Anand   ...

Draw the process flow diagram: Anand   Dairy (AD) sources 150,000 litres of milk daily from large number of local villagers .The milk is collected from 4:00 AM to 6:00 am and

Program for binary search, Illustrates the program for Binary Search. P...

Illustrates the program for Binary Search. Program: Binary Search /*Header Files*/ #include #include /*Functions*/ void binary_search(int array[ ], int value,

Doubly linked lists-implementation, In any singly linked list, each of the ...

In any singly linked list, each of the elements contains a pointer to the next element. We have illustrated this before. In single linked list, traversing is probable only in one d

Binary search tree in ascending order, In order to get the contents of a Bi...

In order to get the contents of a Binary search tree in ascending order, one has to traverse it in In-order

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd