Operations on b-trees, Data Structure & Algorithms

Assignment Help:

Operations on B-Trees

Given are various operations which can be performed on B-Trees:

  • Search
  • Create
  • Insert

B-Tree does effort to minimize disk access and the nodes are usually stored on disk

All the nodes are supposed to be stored into secondary storage instead of primary storage. All references to a given node are preceded through a read operation. Likewise, once a node is changed and it is no longer required, it has to be written out to secondary storage with write operation.

Given is the algorithm for searching a B-tree:

B-Tree Search (x, k)

i < - 1

while i < = n [x] and k > keyi[x]

do i ← i + 1

if i < = n [x] and k = key1 [x]

then return (x, i)

if leaf [x]

then return NIL

else Disk - Read (ci[x])

return B - Tree Search (Ci[x], k)

The search operation is alike to binary tree. Instead of selecting between a left and right child as in binary tree, a B-tree search have to make an n-way choice.

The right child is selected by performing a linear search of the values into the node. After determining the value greater than or equal to desired value, the child pointer to the instantaneous left to that value is followed.

The exact running time of search operation based upon the height of the tree. Given is the algorithm for the creation of a B-tree:

B-Tree Create (T)

x ← Allocate-Node ( )

 Leaf [x] ← True

n [x] ← 0

Disk-write (x)

root [T] ← x

 

The above denoted algorithm creates an empty B-tree through allocating a new root which has no keys and is a leaf node.

Given is the algorithm for insertion into a B-tree:

B-Tree Insert (T,K)

r ← root (T)

if n[r] = 2t - 1

then S ← Allocate-Node ( )

root[T] ← S

leaf [S] ← FALSE

n[S] ← 0

C1 ← r

B-Tree-Split-Child (s, I, r)

B-Tree-Insert-Non full (s, k)

else

B - Tree-Insert-Non full (r, k)

To carry on an insertion on B-tree, the proper node for the key has to be located. Next, the key has to be inserted into the node.

If the node is not full prior to the insertion, then no special action is needed.

If node is full, then the node has to be split to make room for the new key. As splitting the node results in moving one key to the parent node, the parent node ha not be full. Else, another split operation is required.

This procedure may repeat all the way up to the root and may need splitting the root node.


Related Discussions:- Operations on b-trees

Sorting algorithm is best if the list is already sorted, Which sorting algo...

Which sorting algorithm is best if the list is already sorted? Why? Insertion sort as there is no movement of data if the list is already sorted and complexity is of the order

Explain complexity of an algorithm, Complexity of an Algorithm An algo...

Complexity of an Algorithm An algorithm is a sequence of steps to solve a problem; there may be more than one algorithm to solve a problem. The choice of a particular algorith

Explain b- tree, B- Tree  A B-tree of order m is an m-way true in which...

B- Tree  A B-tree of order m is an m-way true in which  1)  All leaves are on the similar level 2)  All internal nodes except the root have at most m-1(non-empty) childre

Tree traversals, There are three kinds of tree traversals, namely, Postorde...

There are three kinds of tree traversals, namely, Postorder , Preorder and Inorder. Preorder traversal: Each of nodes is visited before its children are visited; first the roo

Write an algorithm for binary search, Q.1 Write procedures/ Algorithm to in...

Q.1 Write procedures/ Algorithm to insert and delete an element in to array. Q.2. Write an algorithm for binary search. What are the conditions under which sequential search of

Selection sort, how to reduce the number of passes in selection sort

how to reduce the number of passes in selection sort

Explain about the doubly linked list with neat diagram, Problem 1. Expl...

Problem 1. Explain about the doubly linked list with neat diagram. Diagram Explaining doubly linked list 2. Explain what are the criteria to be used in evaluatin

Binry trees, Build a class ?Node?. It should have a ?value? that it stores ...

Build a class ?Node?. It should have a ?value? that it stores and also links to its parent and children (if they exist). Build getters and setters for it (e.g. parent node, child n

Write about enterprise manager, Question 1 . Give the structure of PL/SQL B...

Question 1 . Give the structure of PL/SQL Blocks and explain Question 2 . Differentiate between PL/SQL functions and procedures Question 3 . Explain the following Par

Red black tree, red black tree construction for 4,5,6,7,8,9

red black tree construction for 4,5,6,7,8,9

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd