Operations on b-trees, Data Structure & Algorithms

Assignment Help:

Operations on B-Trees

Given are various operations which can be performed on B-Trees:

  • Search
  • Create
  • Insert

B-Tree does effort to minimize disk access and the nodes are usually stored on disk

All the nodes are supposed to be stored into secondary storage instead of primary storage. All references to a given node are preceded through a read operation. Likewise, once a node is changed and it is no longer required, it has to be written out to secondary storage with write operation.

Given is the algorithm for searching a B-tree:

B-Tree Search (x, k)

i < - 1

while i < = n [x] and k > keyi[x]

do i ← i + 1

if i < = n [x] and k = key1 [x]

then return (x, i)

if leaf [x]

then return NIL

else Disk - Read (ci[x])

return B - Tree Search (Ci[x], k)

The search operation is alike to binary tree. Instead of selecting between a left and right child as in binary tree, a B-tree search have to make an n-way choice.

The right child is selected by performing a linear search of the values into the node. After determining the value greater than or equal to desired value, the child pointer to the instantaneous left to that value is followed.

The exact running time of search operation based upon the height of the tree. Given is the algorithm for the creation of a B-tree:

B-Tree Create (T)

x ← Allocate-Node ( )

 Leaf [x] ← True

n [x] ← 0

Disk-write (x)

root [T] ← x

 

The above denoted algorithm creates an empty B-tree through allocating a new root which has no keys and is a leaf node.

Given is the algorithm for insertion into a B-tree:

B-Tree Insert (T,K)

r ← root (T)

if n[r] = 2t - 1

then S ← Allocate-Node ( )

root[T] ← S

leaf [S] ← FALSE

n[S] ← 0

C1 ← r

B-Tree-Split-Child (s, I, r)

B-Tree-Insert-Non full (s, k)

else

B - Tree-Insert-Non full (r, k)

To carry on an insertion on B-tree, the proper node for the key has to be located. Next, the key has to be inserted into the node.

If the node is not full prior to the insertion, then no special action is needed.

If node is full, then the node has to be split to make room for the new key. As splitting the node results in moving one key to the parent node, the parent node ha not be full. Else, another split operation is required.

This procedure may repeat all the way up to the root and may need splitting the root node.


Related Discussions:- Operations on b-trees

Depth First Search Through Un-weighted Connected Graph , Q. Write down the ...

Q. Write down the algorithm which does depth first search through an un-weighted connected graph. In an un-weighted graph, would breadth first search or depth first search or neith

..#title, whate is meant by the term heuristic

whate is meant by the term heuristic

Non Recursive Algorithm to Traverse a Binary Tree, Q. Write down a non recu...

Q. Write down a non recursive algorithm to traverse a binary tree in order.                    Ans: N on - recursive algorithm to traverse a binary tree in inorder is as

Explain about hubs, Hubs - In reality a multiport repeater - Connect...

Hubs - In reality a multiport repeater - Connects stations in a physical star topology - As well may create multiple levels of hierarchy to remove length limitation of 10

Explain all-pair shortest-paths problem, Explain All-pair shortest-paths pr...

Explain All-pair shortest-paths problem Given a weighted linked graph (undirected or directed), the all pairs shortest paths problem asks to find the distances (the lengths of

Use of asymptotic notation in the study of algorithm, Q. What is the need o...

Q. What is the need of using asymptotic notation in the study of algorithm? Describe the commonly used asymptotic notations and also give their significance.

Explain floyds algorithm, Explain Floyd's algorithm It is convenient to...

Explain Floyd's algorithm It is convenient to record the lengths of shortest paths in an n by n matrix D known as the  distance matrix: the element d ij   in the i th   row an

Single pointer pointing to the tail of the queue, Can a Queue be shown by c...

Can a Queue be shown by circular linked list with only single pointer pointing to the tail of the queue? Yes a Queue can be shown by a circular linked list with only single p

Define minimum spanning tree, Define Minimum Spanning Tree A minimum sp...

Define Minimum Spanning Tree A minimum spanning tree of a weighted linked graph is its spanning tree of the smallest weight, where the weight of a tree is explained as the sum

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd