Operations on b-trees, Data Structure & Algorithms

Assignment Help:

Operations on B-Trees

Given are various operations which can be performed on B-Trees:

  • Search
  • Create
  • Insert

B-Tree does effort to minimize disk access and the nodes are usually stored on disk

All the nodes are supposed to be stored into secondary storage instead of primary storage. All references to a given node are preceded through a read operation. Likewise, once a node is changed and it is no longer required, it has to be written out to secondary storage with write operation.

Given is the algorithm for searching a B-tree:

B-Tree Search (x, k)

i < - 1

while i < = n [x] and k > keyi[x]

do i ← i + 1

if i < = n [x] and k = key1 [x]

then return (x, i)

if leaf [x]

then return NIL

else Disk - Read (ci[x])

return B - Tree Search (Ci[x], k)

The search operation is alike to binary tree. Instead of selecting between a left and right child as in binary tree, a B-tree search have to make an n-way choice.

The right child is selected by performing a linear search of the values into the node. After determining the value greater than or equal to desired value, the child pointer to the instantaneous left to that value is followed.

The exact running time of search operation based upon the height of the tree. Given is the algorithm for the creation of a B-tree:

B-Tree Create (T)

x ← Allocate-Node ( )

 Leaf [x] ← True

n [x] ← 0

Disk-write (x)

root [T] ← x

 

The above denoted algorithm creates an empty B-tree through allocating a new root which has no keys and is a leaf node.

Given is the algorithm for insertion into a B-tree:

B-Tree Insert (T,K)

r ← root (T)

if n[r] = 2t - 1

then S ← Allocate-Node ( )

root[T] ← S

leaf [S] ← FALSE

n[S] ← 0

C1 ← r

B-Tree-Split-Child (s, I, r)

B-Tree-Insert-Non full (s, k)

else

B - Tree-Insert-Non full (r, k)

To carry on an insertion on B-tree, the proper node for the key has to be located. Next, the key has to be inserted into the node.

If the node is not full prior to the insertion, then no special action is needed.

If node is full, then the node has to be split to make room for the new key. As splitting the node results in moving one key to the parent node, the parent node ha not be full. Else, another split operation is required.

This procedure may repeat all the way up to the root and may need splitting the root node.


Related Discussions:- Operations on b-trees

Determine the class invariants- ruby, Determine the class invariants- Ruby ...

Determine the class invariants- Ruby Ruby has many predefined exceptions classes (like ArgumentError) and new ones can be created easily by sub-classing StandardError, so it's

Full binary trees, Full Binary Trees: A binary tree of height h that had 2...

Full Binary Trees: A binary tree of height h that had 2h -1 elements is called a Full Binary Tree. Complete Binary Trees: A binary tree whereby if the height is d, and all of

Explain the method of overlapping and intersecting, Overlapping or Interse...

Overlapping or Intersecting A polygon overlaps or intersects the current background if any of its sides cuts the edges of the viewport as depicted at the top right corner of th

Binary search tree, A binary search tree (BST), which may sometimes also be...

A binary search tree (BST), which may sometimes also be named a sorted or ordered binary tree, is an edge based binary tree data structure which has the following functionalities:

Name the four data type groups, There are four data type groups:  I...

There are four data type groups:  Integer kepts whole numbers and signed numbers Floating-point Stores real numbers (fractional values). Perfect for storing bank deposit

Progrrame, how to write a code for for a company , for calculate the salary...

how to write a code for for a company , for calculate the salary pay

Write the algorithm to find input and output value, This algorithm inputs 5...

This algorithm inputs 5 values and outputs how many input numbers were positive and how many were negative. Data to be used: N = 1, -5, 2, -8, -7

Sorting algorithm, Sorting Algorithm A sorting algorithm is an algorit...

Sorting Algorithm A sorting algorithm is an algorithm which puts elements of a list in a certain order. The most-used orders are numerical order and lexicographical order. Eff

Array vs. ordinary variable, Q. Describe what do you understand by the term...

Q. Describe what do you understand by the term array? How does an array vary from an ordinary variable? How are the arrays represented in the specific memory?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd