Operations on b-trees, Data Structure & Algorithms

Assignment Help:

Operations on B-Trees

Given are various operations which can be performed on B-Trees:

  • Search
  • Create
  • Insert

B-Tree does effort to minimize disk access and the nodes are usually stored on disk

All the nodes are supposed to be stored into secondary storage instead of primary storage. All references to a given node are preceded through a read operation. Likewise, once a node is changed and it is no longer required, it has to be written out to secondary storage with write operation.

Given is the algorithm for searching a B-tree:

B-Tree Search (x, k)

i < - 1

while i < = n [x] and k > keyi[x]

do i ← i + 1

if i < = n [x] and k = key1 [x]

then return (x, i)

if leaf [x]

then return NIL

else Disk - Read (ci[x])

return B - Tree Search (Ci[x], k)

The search operation is alike to binary tree. Instead of selecting between a left and right child as in binary tree, a B-tree search have to make an n-way choice.

The right child is selected by performing a linear search of the values into the node. After determining the value greater than or equal to desired value, the child pointer to the instantaneous left to that value is followed.

The exact running time of search operation based upon the height of the tree. Given is the algorithm for the creation of a B-tree:

B-Tree Create (T)

x ← Allocate-Node ( )

 Leaf [x] ← True

n [x] ← 0

Disk-write (x)

root [T] ← x

 

The above denoted algorithm creates an empty B-tree through allocating a new root which has no keys and is a leaf node.

Given is the algorithm for insertion into a B-tree:

B-Tree Insert (T,K)

r ← root (T)

if n[r] = 2t - 1

then S ← Allocate-Node ( )

root[T] ← S

leaf [S] ← FALSE

n[S] ← 0

C1 ← r

B-Tree-Split-Child (s, I, r)

B-Tree-Insert-Non full (s, k)

else

B - Tree-Insert-Non full (r, k)

To carry on an insertion on B-tree, the proper node for the key has to be located. Next, the key has to be inserted into the node.

If the node is not full prior to the insertion, then no special action is needed.

If node is full, then the node has to be split to make room for the new key. As splitting the node results in moving one key to the parent node, the parent node ha not be full. Else, another split operation is required.

This procedure may repeat all the way up to the root and may need splitting the root node.


Related Discussions:- Operations on b-trees

Binry trees, Build a class ?Node?. It should have a ?value? that it stores ...

Build a class ?Node?. It should have a ?value? that it stores and also links to its parent and children (if they exist). Build getters and setters for it (e.g. parent node, child n

Deletion of any element from the queue, Program segment for the deletion of...

Program segment for the deletion of any element from the queue delmq(i)  /* Delete any element from queue i */ { int i,x; if ( front[i] == rear[i]) printf("Queue is

Explain principle of optimality, Explain principle of Optimality It ind...

Explain principle of Optimality It indicates that an optimal solution to any instance of an optimization problem is composed of  optimal solutions to its subinstances.

Database design and sql queries, In assignment, you have already started th...

In assignment, you have already started the process of designing a database for the Beauty Salon mini-case (enclosed again below), mainly in the phase of conceptual database design

Linked lists - implementation, The Linked list is a chain of structures whe...

The Linked list is a chain of structures wherein each structure contains data in addition to pointer, which stores the address (link) of the next logical structure in the list.

Arrays and pointers, C compiler does not verify the bounds of arrays. It is...

C compiler does not verify the bounds of arrays. It is your job to do the essential work for checking boundaries wherever required. One of the most common arrays is a string tha

Big o notation, This notation gives an upper bound for a function to within...

This notation gives an upper bound for a function to within a constant factor. Given Figure illustrates the plot of f(n) = O(g(n)) depend on big O notation. We write f(n) = O(g(n))

Total weight of minimum spanning tree, a) Run your program for α = 0.05, 0...

a) Run your program for α = 0.05, 0.5, and 0.95. You can use n = 30, and W = 10. What is impact of increasing value of α on connectivity of G'? To answer this question, for each v

Methods, what is folding method?

what is folding method?

Graph, explain the prims''s algorithm with suitable example?

explain the prims''s algorithm with suitable example?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd