Operations on b-trees, Data Structure & Algorithms

Assignment Help:

Operations on B-Trees

Given are various operations which can be performed on B-Trees:

  • Search
  • Create
  • Insert

B-Tree does effort to minimize disk access and the nodes are usually stored on disk

All the nodes are supposed to be stored into secondary storage instead of primary storage. All references to a given node are preceded through a read operation. Likewise, once a node is changed and it is no longer required, it has to be written out to secondary storage with write operation.

Given is the algorithm for searching a B-tree:

B-Tree Search (x, k)

i < - 1

while i < = n [x] and k > keyi[x]

do i ← i + 1

if i < = n [x] and k = key1 [x]

then return (x, i)

if leaf [x]

then return NIL

else Disk - Read (ci[x])

return B - Tree Search (Ci[x], k)

The search operation is alike to binary tree. Instead of selecting between a left and right child as in binary tree, a B-tree search have to make an n-way choice.

The right child is selected by performing a linear search of the values into the node. After determining the value greater than or equal to desired value, the child pointer to the instantaneous left to that value is followed.

The exact running time of search operation based upon the height of the tree. Given is the algorithm for the creation of a B-tree:

B-Tree Create (T)

x ← Allocate-Node ( )

 Leaf [x] ← True

n [x] ← 0

Disk-write (x)

root [T] ← x

 

The above denoted algorithm creates an empty B-tree through allocating a new root which has no keys and is a leaf node.

Given is the algorithm for insertion into a B-tree:

B-Tree Insert (T,K)

r ← root (T)

if n[r] = 2t - 1

then S ← Allocate-Node ( )

root[T] ← S

leaf [S] ← FALSE

n[S] ← 0

C1 ← r

B-Tree-Split-Child (s, I, r)

B-Tree-Insert-Non full (s, k)

else

B - Tree-Insert-Non full (r, k)

To carry on an insertion on B-tree, the proper node for the key has to be located. Next, the key has to be inserted into the node.

If the node is not full prior to the insertion, then no special action is needed.

If node is full, then the node has to be split to make room for the new key. As splitting the node results in moving one key to the parent node, the parent node ha not be full. Else, another split operation is required.

This procedure may repeat all the way up to the root and may need splitting the root node.


Related Discussions:- Operations on b-trees

A full binary tree with 2n+1 nodes, A full binary tree with 2n+1 nodes have...

A full binary tree with 2n+1 nodes have n non-leaf nodes

Recursion, i need help in java recursion assignment.

i need help in java recursion assignment.

A Booth''s, Draw a flowchart of a Booth''s multiplication algorithm and exp...

Draw a flowchart of a Booth''s multiplication algorithm and explain it.

Darw a flowchart that inputs country someone is visiting, Regis lives in Br...

Regis lives in Brazil and frequently travels to USA, Japan and Europe. He wants to be able to convert Brazilian Reais into US dollars, European euros and Japanese yen. Conversion f

Draws a rectangular grid algorithms, Prepare a GUI called Hotplate GUI that...

Prepare a GUI called Hotplate GUI that holds a central panel that draws a rectangular grid that represents Element objects which should be held in a 2-dimensional array. The applic

Red-black tree after insertion, The above 3 cases are also considered conve...

The above 3 cases are also considered conversely while the parent of Z is to the right of its own parent. All the different kind of cases can be illustrated through an instance. Le

Properties of red- black tree, Any Binary search tree has to contain follow...

Any Binary search tree has to contain following properties to be called as a red- black tree. 1. Each node of a tree must be either red or black. 2. The root node is always b

Maximum degree of any vertex in a simple graph, The maximum degree of any v...

The maximum degree of any vertex in a simple graph with n vertices is (n-1) is the maximum degree of the vertex in a simple graph.

Searching, Searching is the procedure of looking for something: Finding one...

Searching is the procedure of looking for something: Finding one piece of data that has been stored inside a whole group of data. It is frequently the most time-consuming part of m

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd