Operations on b-trees, Data Structure & Algorithms

Assignment Help:

Operations on B-Trees

Given are various operations which can be performed on B-Trees:

  • Search
  • Create
  • Insert

B-Tree does effort to minimize disk access and the nodes are usually stored on disk

All the nodes are supposed to be stored into secondary storage instead of primary storage. All references to a given node are preceded through a read operation. Likewise, once a node is changed and it is no longer required, it has to be written out to secondary storage with write operation.

Given is the algorithm for searching a B-tree:

B-Tree Search (x, k)

i < - 1

while i < = n [x] and k > keyi[x]

do i ← i + 1

if i < = n [x] and k = key1 [x]

then return (x, i)

if leaf [x]

then return NIL

else Disk - Read (ci[x])

return B - Tree Search (Ci[x], k)

The search operation is alike to binary tree. Instead of selecting between a left and right child as in binary tree, a B-tree search have to make an n-way choice.

The right child is selected by performing a linear search of the values into the node. After determining the value greater than or equal to desired value, the child pointer to the instantaneous left to that value is followed.

The exact running time of search operation based upon the height of the tree. Given is the algorithm for the creation of a B-tree:

B-Tree Create (T)

x ← Allocate-Node ( )

 Leaf [x] ← True

n [x] ← 0

Disk-write (x)

root [T] ← x

 

The above denoted algorithm creates an empty B-tree through allocating a new root which has no keys and is a leaf node.

Given is the algorithm for insertion into a B-tree:

B-Tree Insert (T,K)

r ← root (T)

if n[r] = 2t - 1

then S ← Allocate-Node ( )

root[T] ← S

leaf [S] ← FALSE

n[S] ← 0

C1 ← r

B-Tree-Split-Child (s, I, r)

B-Tree-Insert-Non full (s, k)

else

B - Tree-Insert-Non full (r, k)

To carry on an insertion on B-tree, the proper node for the key has to be located. Next, the key has to be inserted into the node.

If the node is not full prior to the insertion, then no special action is needed.

If node is full, then the node has to be split to make room for the new key. As splitting the node results in moving one key to the parent node, the parent node ha not be full. Else, another split operation is required.

This procedure may repeat all the way up to the root and may need splitting the root node.


Related Discussions:- Operations on b-trees

Explain class p problems, Explain class P problems Class  P  is  a  cla...

Explain class P problems Class  P  is  a  class  of  decision  problems  that  can  be  solved  in  polynomial time  by(deterministic) algorithms. This class of problems is kno

Complexity of algorithm, The simplest implementation of the Dijkstra's algo...

The simplest implementation of the Dijkstra's algorithm stores vertices of set Q into an ordinary linked list or array, and operation Extract-Min(Q) is just a linear search through

Parallel implementation of the raytracer, You are supposed to do the follow...

You are supposed to do the following: Write a parallel implementation of the raytracer using pthreads. Measure and compare the execution times for (i) the sequential ver

What is keyed access- container, What is Keyed Access- Container A c...

What is Keyed Access- Container A collection may allow its elements to be accessed by keys. For instance, maps are unstructured containers which allows their elements to be

Determine in brief the painter algorithm, Determine in brief the Painter A...

Determine in brief the Painter Algorithm a) The farthest polygon, namely the rectangle PQRS, is stored first. (b) The next farthest, the quadrilateral ABCD, is superpo

Importance of game theory to decisions, Question: (a) Discuss the impor...

Question: (a) Discuss the importance of game theory to decisions. (b) Explain the following: (i) saddle point, (ii) two-person zero-sum game. (c) Two leading ?rms, ABC Ltd a

Insertion of a node into a binary search tree, A binary search tree is cons...

A binary search tree is constructed through the repeated insertion of new nodes in a binary tree structure. Insertion has to maintain the order of the tree. The value to the lef

State the range of operation of abstract data type, State the range of oper...

State the range of operation of ADT Operations of the Range of T ADT includes following, where a, b ∈ T and r and s are values of Range of T: a...b-returns a range value (an

Explain stacks, What are stacks? A stack is a data structure that organ...

What are stacks? A stack is a data structure that organizes data similar to how one organizes a pile of coins. The new coin is always placed on the top and the oldest is on the

Polynomials - represented by using arrays, /* the program accepts two polyn...

/* the program accepts two polynomials as a input & prints the resultant polynomial because of the addition of input polynomials*/ #include void main() { int poly1[6][

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd