Operations on b-trees, Data Structure & Algorithms

Assignment Help:

Operations on B-Trees

Given are various operations which can be performed on B-Trees:

  • Search
  • Create
  • Insert

B-Tree does effort to minimize disk access and the nodes are usually stored on disk

All the nodes are supposed to be stored into secondary storage instead of primary storage. All references to a given node are preceded through a read operation. Likewise, once a node is changed and it is no longer required, it has to be written out to secondary storage with write operation.

Given is the algorithm for searching a B-tree:

B-Tree Search (x, k)

i < - 1

while i < = n [x] and k > keyi[x]

do i ← i + 1

if i < = n [x] and k = key1 [x]

then return (x, i)

if leaf [x]

then return NIL

else Disk - Read (ci[x])

return B - Tree Search (Ci[x], k)

The search operation is alike to binary tree. Instead of selecting between a left and right child as in binary tree, a B-tree search have to make an n-way choice.

The right child is selected by performing a linear search of the values into the node. After determining the value greater than or equal to desired value, the child pointer to the instantaneous left to that value is followed.

The exact running time of search operation based upon the height of the tree. Given is the algorithm for the creation of a B-tree:

B-Tree Create (T)

x ← Allocate-Node ( )

 Leaf [x] ← True

n [x] ← 0

Disk-write (x)

root [T] ← x

 

The above denoted algorithm creates an empty B-tree through allocating a new root which has no keys and is a leaf node.

Given is the algorithm for insertion into a B-tree:

B-Tree Insert (T,K)

r ← root (T)

if n[r] = 2t - 1

then S ← Allocate-Node ( )

root[T] ← S

leaf [S] ← FALSE

n[S] ← 0

C1 ← r

B-Tree-Split-Child (s, I, r)

B-Tree-Insert-Non full (s, k)

else

B - Tree-Insert-Non full (r, k)

To carry on an insertion on B-tree, the proper node for the key has to be located. Next, the key has to be inserted into the node.

If the node is not full prior to the insertion, then no special action is needed.

If node is full, then the node has to be split to make room for the new key. As splitting the node results in moving one key to the parent node, the parent node ha not be full. Else, another split operation is required.

This procedure may repeat all the way up to the root and may need splitting the root node.


Related Discussions:- Operations on b-trees

Advantages of first in first out method, Advantages of First in First out (...

Advantages of First in First out (FIFO) Costing Advantages claimed for first in first  out (FIFO)  costing method are: 1. Materials used are drawn from the cost record in

Explain the memory function method, Explain the Memory Function method ...

Explain the Memory Function method The Memory Function method seeks to combine strengths of the top  down and bottom-up approaches  to  solving  problems  with  overlapping  su

Multiplication, Implement multiple stacks in a single dimensional array. Wr...

Implement multiple stacks in a single dimensional array. Write algorithms for various stack operations for them.

Splaying steps - splay trees, Readjusting for tree modification calls for r...

Readjusting for tree modification calls for rotations in the binary search tree. Single rotations are possible in the left or right direction for moving a node to the root position

Circular doubly link list, what is circular doubly link list?write down the...

what is circular doubly link list?write down the algorithm for insertion of elements in circular doubly link list

Define chaining process of hashing, Chaining In this method, instead of...

Chaining In this method, instead of hashing function value as location we use it as an index into an array of pointers. Every pointer access a chain that holds the element havi

Pest control program, PART- Pest Control Program Prepare a Pest Contro...

PART- Pest Control Program Prepare a Pest Control Program for the facility that will address the management of Rodents, Insects and Birds. Your Pest Control Program should

Which sorting algorithm is adaptable to singly linked list, Which sorting a...

Which sorting algorithm is easily adaptable to singly linked lists? Simple Insertion sor t is easily adabtable to singly linked list.

Adjacency list representation, Adjacency list representation An Adjacen...

Adjacency list representation An Adjacency list representation of Graph G = {V, E} contains an array of adjacency lists mentioned by adj of V list. For each of the vertex u?V,

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd