Operations on b-trees, Data Structure & Algorithms

Assignment Help:

Operations on B-Trees

Given are various operations which can be performed on B-Trees:

  • Search
  • Create
  • Insert

B-Tree does effort to minimize disk access and the nodes are usually stored on disk

All the nodes are supposed to be stored into secondary storage instead of primary storage. All references to a given node are preceded through a read operation. Likewise, once a node is changed and it is no longer required, it has to be written out to secondary storage with write operation.

Given is the algorithm for searching a B-tree:

B-Tree Search (x, k)

i < - 1

while i < = n [x] and k > keyi[x]

do i ← i + 1

if i < = n [x] and k = key1 [x]

then return (x, i)

if leaf [x]

then return NIL

else Disk - Read (ci[x])

return B - Tree Search (Ci[x], k)

The search operation is alike to binary tree. Instead of selecting between a left and right child as in binary tree, a B-tree search have to make an n-way choice.

The right child is selected by performing a linear search of the values into the node. After determining the value greater than or equal to desired value, the child pointer to the instantaneous left to that value is followed.

The exact running time of search operation based upon the height of the tree. Given is the algorithm for the creation of a B-tree:

B-Tree Create (T)

x ← Allocate-Node ( )

 Leaf [x] ← True

n [x] ← 0

Disk-write (x)

root [T] ← x

 

The above denoted algorithm creates an empty B-tree through allocating a new root which has no keys and is a leaf node.

Given is the algorithm for insertion into a B-tree:

B-Tree Insert (T,K)

r ← root (T)

if n[r] = 2t - 1

then S ← Allocate-Node ( )

root[T] ← S

leaf [S] ← FALSE

n[S] ← 0

C1 ← r

B-Tree-Split-Child (s, I, r)

B-Tree-Insert-Non full (s, k)

else

B - Tree-Insert-Non full (r, k)

To carry on an insertion on B-tree, the proper node for the key has to be located. Next, the key has to be inserted into the node.

If the node is not full prior to the insertion, then no special action is needed.

If node is full, then the node has to be split to make room for the new key. As splitting the node results in moving one key to the parent node, the parent node ha not be full. Else, another split operation is required.

This procedure may repeat all the way up to the root and may need splitting the root node.


Related Discussions:- Operations on b-trees

Indexed sequential files, Indexed Sequential Files An index is inserted...

Indexed Sequential Files An index is inserted to the sequential file to provide random access. An overflow area required to be maintained to permit insertion in sequence. I

Explain binary search tree, Binary search tree. A binary search tree is...

Binary search tree. A binary search tree is a binary tree that is either empty or in which every node having a key that satisfies the following conditions: - All keys (if an

Functions for inserting and deleting at either end of deque, Q. Devise a re...

Q. Devise a representation for a given list where insertions and deletions can be made at both the ends. Such a structure is called Deque (which means Double ended queue). Write fu

DAA, what do we use asymptotic notation in study of algorithm?Describe vari...

what do we use asymptotic notation in study of algorithm?Describe various asymptotic notation and give their significance.

Binary search, Explain binary search with an example

Explain binary search with an example

Circular linklist, write an algorithm to insert an element at the beginning...

write an algorithm to insert an element at the beginning of a circular linked list?

The number of different directed trees with 3 nodes, The number of differen...

The number of different directed trees with 3 nodes are ?? The number of disimilar directed trees with three nodes are 3

Rotations in binary tree, H o w can you r ot a t e a B i n a r y...

H o w can you r ot a t e a B i n a r y Tr e e? E x pl a i n r i g h t a n d l eft r ot a tion s by taking an e x a mpl e.   If after

Enumerate about the data structure, Enumerate about the Data structure ...

Enumerate about the Data structure An arrangement of data in memory locations to signify values of the carrier set of an abstract data type. Realizing computational mechanis

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd