Operations on b-trees, Data Structure & Algorithms

Assignment Help:

Operations on B-Trees

Given are various operations which can be performed on B-Trees:

  • Search
  • Create
  • Insert

B-Tree does effort to minimize disk access and the nodes are usually stored on disk

All the nodes are supposed to be stored into secondary storage instead of primary storage. All references to a given node are preceded through a read operation. Likewise, once a node is changed and it is no longer required, it has to be written out to secondary storage with write operation.

Given is the algorithm for searching a B-tree:

B-Tree Search (x, k)

i < - 1

while i < = n [x] and k > keyi[x]

do i ← i + 1

if i < = n [x] and k = key1 [x]

then return (x, i)

if leaf [x]

then return NIL

else Disk - Read (ci[x])

return B - Tree Search (Ci[x], k)

The search operation is alike to binary tree. Instead of selecting between a left and right child as in binary tree, a B-tree search have to make an n-way choice.

The right child is selected by performing a linear search of the values into the node. After determining the value greater than or equal to desired value, the child pointer to the instantaneous left to that value is followed.

The exact running time of search operation based upon the height of the tree. Given is the algorithm for the creation of a B-tree:

B-Tree Create (T)

x ← Allocate-Node ( )

 Leaf [x] ← True

n [x] ← 0

Disk-write (x)

root [T] ← x

 

The above denoted algorithm creates an empty B-tree through allocating a new root which has no keys and is a leaf node.

Given is the algorithm for insertion into a B-tree:

B-Tree Insert (T,K)

r ← root (T)

if n[r] = 2t - 1

then S ← Allocate-Node ( )

root[T] ← S

leaf [S] ← FALSE

n[S] ← 0

C1 ← r

B-Tree-Split-Child (s, I, r)

B-Tree-Insert-Non full (s, k)

else

B - Tree-Insert-Non full (r, k)

To carry on an insertion on B-tree, the proper node for the key has to be located. Next, the key has to be inserted into the node.

If the node is not full prior to the insertion, then no special action is needed.

If node is full, then the node has to be split to make room for the new key. As splitting the node results in moving one key to the parent node, the parent node ha not be full. Else, another split operation is required.

This procedure may repeat all the way up to the root and may need splitting the root node.


Related Discussions:- Operations on b-trees

Determine the greatest common divisor, Determine the greatest common diviso...

Determine the greatest common divisor (GCD) of two integers, m & n. The algorithm for GCD might be defined as follows: While m is greater than zero: If n is greater than m, s

Algorithm, implement multiple stack in one dimensional array

implement multiple stack in one dimensional array

Time complexity, The  total  of  time  needed  by  an algorithm to run to i...

The  total  of  time  needed  by  an algorithm to run to its completion is termed as time complexity. The asymptotic running time of an algorithm is given in terms of functions. Th

State a algorithm that inputs the heights of all 500 student, As part of an...

As part of an experiment, a school measured heights (in metres) of all its 500 students. Write an algorithm, using a flowchart that inputs the heights of all 500 students and ou

Linked list, How to creat ATM project by using double linked list?

How to creat ATM project by using double linked list?

Describe data structure?, Typical programming languages such as Pascal, C o...

Typical programming languages such as Pascal, C or Java give primitive data kinds such as integers, boolean, reals values and strings. They give these to be organised into arrays,

The threaded binary tree, By changing the NULL lines in a binary tree to th...

By changing the NULL lines in a binary tree to the special links called threads, it is possible to execute traversal, insertion and deletion without using either a stack or recursi

Stacks, reverse the order of elements on a stack S using two additional sta...

reverse the order of elements on a stack S using two additional stacks using one additional stack

Algorithm, implement multiple stacks in a single dimensional array. write a...

implement multiple stacks in a single dimensional array. write algorithm for various stack operation for them

What is keyed access- container, What is Keyed Access- Container A c...

What is Keyed Access- Container A collection may allow its elements to be accessed by keys. For instance, maps are unstructured containers which allows their elements to be

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd