Operations on b-trees, Data Structure & Algorithms

Assignment Help:

Operations on B-Trees

Given are various operations which can be performed on B-Trees:

  • Search
  • Create
  • Insert

B-Tree does effort to minimize disk access and the nodes are usually stored on disk

All the nodes are supposed to be stored into secondary storage instead of primary storage. All references to a given node are preceded through a read operation. Likewise, once a node is changed and it is no longer required, it has to be written out to secondary storage with write operation.

Given is the algorithm for searching a B-tree:

B-Tree Search (x, k)

i < - 1

while i < = n [x] and k > keyi[x]

do i ← i + 1

if i < = n [x] and k = key1 [x]

then return (x, i)

if leaf [x]

then return NIL

else Disk - Read (ci[x])

return B - Tree Search (Ci[x], k)

The search operation is alike to binary tree. Instead of selecting between a left and right child as in binary tree, a B-tree search have to make an n-way choice.

The right child is selected by performing a linear search of the values into the node. After determining the value greater than or equal to desired value, the child pointer to the instantaneous left to that value is followed.

The exact running time of search operation based upon the height of the tree. Given is the algorithm for the creation of a B-tree:

B-Tree Create (T)

x ← Allocate-Node ( )

 Leaf [x] ← True

n [x] ← 0

Disk-write (x)

root [T] ← x

 

The above denoted algorithm creates an empty B-tree through allocating a new root which has no keys and is a leaf node.

Given is the algorithm for insertion into a B-tree:

B-Tree Insert (T,K)

r ← root (T)

if n[r] = 2t - 1

then S ← Allocate-Node ( )

root[T] ← S

leaf [S] ← FALSE

n[S] ← 0

C1 ← r

B-Tree-Split-Child (s, I, r)

B-Tree-Insert-Non full (s, k)

else

B - Tree-Insert-Non full (r, k)

To carry on an insertion on B-tree, the proper node for the key has to be located. Next, the key has to be inserted into the node.

If the node is not full prior to the insertion, then no special action is needed.

If node is full, then the node has to be split to make room for the new key. As splitting the node results in moving one key to the parent node, the parent node ha not be full. Else, another split operation is required.

This procedure may repeat all the way up to the root and may need splitting the root node.


Related Discussions:- Operations on b-trees

Determine in brief the painter algorithm, Determine in brief the Painter A...

Determine in brief the Painter Algorithm a) The farthest polygon, namely the rectangle PQRS, is stored first. (b) The next farthest, the quadrilateral ABCD, is superpo

Multiple queue, How to create multiple queue on single array?

How to create multiple queue on single array?

Method for keeping two stacks within a single linear array, Q. Define a met...

Q. Define a method for keeping two stacks within a single linear array S in such a way that neither stack overflows until entire array is used and a whole stack is never shifted to

Analyze an algorithm, In order to analyze an algorithm is to find out the a...

In order to analyze an algorithm is to find out the amount of resources (like time & storage) that are utilized to execute. Mostly algorithms are designed to work along with inputs

Write an algorithm for binary search, Q.1 Write procedures/ Algorithm to in...

Q.1 Write procedures/ Algorithm to insert and delete an element in to array. Q.2. Write an algorithm for binary search. What are the conditions under which sequential search of

Representation of data structure in memory, Representation of data structur...

Representation of data structure in memory is known as: Abstract data type

Representation of a sparse matrix, Let us assume a sparse matrix from stora...

Let us assume a sparse matrix from storage view point. Assume that the entire sparse matrix is stored. Then, a significant amount of memory that stores the matrix consists of zeroe

Pre-order and post order traversal of a binary tree, The pre-order and post...

The pre-order and post order traversal of a Binary Tree generates the same output. The tree can have maximum One node

Queues, Queue is a linear data structure utilized in several applications o...

Queue is a linear data structure utilized in several applications of computer science. Such as people stand in a queue to get a specific service, several processes will wait in a q

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd