Operations on b-trees, Data Structure & Algorithms

Assignment Help:

Operations on B-Trees

Given are various operations which can be performed on B-Trees:

  • Search
  • Create
  • Insert

B-Tree does effort to minimize disk access and the nodes are usually stored on disk

All the nodes are supposed to be stored into secondary storage instead of primary storage. All references to a given node are preceded through a read operation. Likewise, once a node is changed and it is no longer required, it has to be written out to secondary storage with write operation.

Given is the algorithm for searching a B-tree:

B-Tree Search (x, k)

i < - 1

while i < = n [x] and k > keyi[x]

do i ← i + 1

if i < = n [x] and k = key1 [x]

then return (x, i)

if leaf [x]

then return NIL

else Disk - Read (ci[x])

return B - Tree Search (Ci[x], k)

The search operation is alike to binary tree. Instead of selecting between a left and right child as in binary tree, a B-tree search have to make an n-way choice.

The right child is selected by performing a linear search of the values into the node. After determining the value greater than or equal to desired value, the child pointer to the instantaneous left to that value is followed.

The exact running time of search operation based upon the height of the tree. Given is the algorithm for the creation of a B-tree:

B-Tree Create (T)

x ← Allocate-Node ( )

 Leaf [x] ← True

n [x] ← 0

Disk-write (x)

root [T] ← x

 

The above denoted algorithm creates an empty B-tree through allocating a new root which has no keys and is a leaf node.

Given is the algorithm for insertion into a B-tree:

B-Tree Insert (T,K)

r ← root (T)

if n[r] = 2t - 1

then S ← Allocate-Node ( )

root[T] ← S

leaf [S] ← FALSE

n[S] ← 0

C1 ← r

B-Tree-Split-Child (s, I, r)

B-Tree-Insert-Non full (s, k)

else

B - Tree-Insert-Non full (r, k)

To carry on an insertion on B-tree, the proper node for the key has to be located. Next, the key has to be inserted into the node.

If the node is not full prior to the insertion, then no special action is needed.

If node is full, then the node has to be split to make room for the new key. As splitting the node results in moving one key to the parent node, the parent node ha not be full. Else, another split operation is required.

This procedure may repeat all the way up to the root and may need splitting the root node.


Related Discussions:- Operations on b-trees

Stacks, Q. Explain w hat are the stacks? How can we use the stacks  to chec...

Q. Explain w hat are the stacks? How can we use the stacks  to check whether an expression is correctly parentheses or not. For example (()) is well formed but (() or )()( is not w

Name the four data type groups, There are four data type groups:  I...

There are four data type groups:  Integer kepts whole numbers and signed numbers Floating-point Stores real numbers (fractional values). Perfect for storing bank deposit

Merge sort, Merge sort is a sorting algorithm which uses the basic idea of ...

Merge sort is a sorting algorithm which uses the basic idea of divide and conquers. This algorithm initially divides the array into two halves, sorts them separately and then merge

Euclidean algorithm, The Euclidean algorithm is an algorithm to decide the ...

The Euclidean algorithm is an algorithm to decide the greatest common divisor of two positive integers. The greatest common divisor of N and M, in short GCD(M,N), is the largest in

Insertion into a red-black tree, The insertion procedure in a red-black tre...

The insertion procedure in a red-black tree is similar to a binary search tree i.e., the insertion proceeds in a similar manner but after insertion of nodes x into the tree T, we c

Red-black tree after insertion, The above 3 cases are also considered conve...

The above 3 cases are also considered conversely while the parent of Z is to the right of its own parent. All the different kind of cases can be illustrated through an instance. Le

Binary tree construction, Construct a B+ tree for the following keys, start...

Construct a B+ tree for the following keys, starting with an empty tree.  Each node in the tree can hold a maximum of 2 entries (i.e., order d = 1). Start with an empty root nod

A binary tree in which levels except possibly the last, A binary tree in wh...

A binary tree in which if all its levels except possibly the last, have the maximum number of nodes and all the nodes at the last level appear as far left as possible, is called as

Sorting algorithm, Sorting Algorithm A sorting algorithm is an algorit...

Sorting Algorithm A sorting algorithm is an algorithm which puts elements of a list in a certain order. The most-used orders are numerical order and lexicographical order. Eff

Compute the shortest paths to all network nodes, (i)  Consider a system usi...

(i)  Consider a system using flooding with hop counter. Suppose that the hop counter is originally set to the "diameter" (number of hops in the longest path without traversing any

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd