Operations on b-trees, Data Structure & Algorithms

Assignment Help:

Operations on B-Trees

Given are various operations which can be performed on B-Trees:

  • Search
  • Create
  • Insert

B-Tree does effort to minimize disk access and the nodes are usually stored on disk

All the nodes are supposed to be stored into secondary storage instead of primary storage. All references to a given node are preceded through a read operation. Likewise, once a node is changed and it is no longer required, it has to be written out to secondary storage with write operation.

Given is the algorithm for searching a B-tree:

B-Tree Search (x, k)

i < - 1

while i < = n [x] and k > keyi[x]

do i ← i + 1

if i < = n [x] and k = key1 [x]

then return (x, i)

if leaf [x]

then return NIL

else Disk - Read (ci[x])

return B - Tree Search (Ci[x], k)

The search operation is alike to binary tree. Instead of selecting between a left and right child as in binary tree, a B-tree search have to make an n-way choice.

The right child is selected by performing a linear search of the values into the node. After determining the value greater than or equal to desired value, the child pointer to the instantaneous left to that value is followed.

The exact running time of search operation based upon the height of the tree. Given is the algorithm for the creation of a B-tree:

B-Tree Create (T)

x ← Allocate-Node ( )

 Leaf [x] ← True

n [x] ← 0

Disk-write (x)

root [T] ← x

 

The above denoted algorithm creates an empty B-tree through allocating a new root which has no keys and is a leaf node.

Given is the algorithm for insertion into a B-tree:

B-Tree Insert (T,K)

r ← root (T)

if n[r] = 2t - 1

then S ← Allocate-Node ( )

root[T] ← S

leaf [S] ← FALSE

n[S] ← 0

C1 ← r

B-Tree-Split-Child (s, I, r)

B-Tree-Insert-Non full (s, k)

else

B - Tree-Insert-Non full (r, k)

To carry on an insertion on B-tree, the proper node for the key has to be located. Next, the key has to be inserted into the node.

If the node is not full prior to the insertion, then no special action is needed.

If node is full, then the node has to be split to make room for the new key. As splitting the node results in moving one key to the parent node, the parent node ha not be full. Else, another split operation is required.

This procedure may repeat all the way up to the root and may need splitting the root node.


Related Discussions:- Operations on b-trees

Representation of sets?, A set s is conveniently shown in a computer store ...

A set s is conveniently shown in a computer store by its characteristic function C(s). This is an array of logical numbers whose ith element has the meaning "i is present in s". As

Multiple stack, implement multiple stack in single dimensionl array.write a...

implement multiple stack in single dimensionl array.write algorithms for various stack operation for them

Determine yiq colour model, Determine YIQ Colour Model Whereas an RGB m...

Determine YIQ Colour Model Whereas an RGB monitor requires separate signals for the red, green, and blue components of an image, a television monitor uses a single composite si

Algorithm for binary search, Q. Write down the algorithm for binary search....

Q. Write down the algorithm for binary search. Which are the conditions under which sequential search of a list is preferred over the binary search?

Lilz, I need to know about data structure and algorithms. can you help me?

I need to know about data structure and algorithms. can you help me?

Algorithm for determining who won rock paper scissors game, Suppose you are...

Suppose you are given the results of 5 games of rock-paper-scissors. The results are given to you on separate pieces of paper; each piece says either 'A' if the first person won, o

B-tree of degree 3, Q. Explain the result of inserting the keys given. ...

Q. Explain the result of inserting the keys given. F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B, X, Y, D, Z, E  in an order to an empty B-tree of degree-3.

Multiple stack in single dimensional array, Implement multiple stacks in a ...

Implement multiple stacks in a single dimensional array. Write algorithms for various stack operations for them.

Example of binary search, Let us assume a file of 5 records that means n = ...

Let us assume a file of 5 records that means n = 5 And k is a sorted array of keys of those 5 records. Let key = 55, low = 0, high = 4 Iteration 1: mid = (0+4)/2 = 2

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd