Operations on b-trees, Data Structure & Algorithms

Assignment Help:

Operations on B-Trees

Given are various operations which can be performed on B-Trees:

  • Search
  • Create
  • Insert

B-Tree does effort to minimize disk access and the nodes are usually stored on disk

All the nodes are supposed to be stored into secondary storage instead of primary storage. All references to a given node are preceded through a read operation. Likewise, once a node is changed and it is no longer required, it has to be written out to secondary storage with write operation.

Given is the algorithm for searching a B-tree:

B-Tree Search (x, k)

i < - 1

while i < = n [x] and k > keyi[x]

do i ← i + 1

if i < = n [x] and k = key1 [x]

then return (x, i)

if leaf [x]

then return NIL

else Disk - Read (ci[x])

return B - Tree Search (Ci[x], k)

The search operation is alike to binary tree. Instead of selecting between a left and right child as in binary tree, a B-tree search have to make an n-way choice.

The right child is selected by performing a linear search of the values into the node. After determining the value greater than or equal to desired value, the child pointer to the instantaneous left to that value is followed.

The exact running time of search operation based upon the height of the tree. Given is the algorithm for the creation of a B-tree:

B-Tree Create (T)

x ← Allocate-Node ( )

 Leaf [x] ← True

n [x] ← 0

Disk-write (x)

root [T] ← x

 

The above denoted algorithm creates an empty B-tree through allocating a new root which has no keys and is a leaf node.

Given is the algorithm for insertion into a B-tree:

B-Tree Insert (T,K)

r ← root (T)

if n[r] = 2t - 1

then S ← Allocate-Node ( )

root[T] ← S

leaf [S] ← FALSE

n[S] ← 0

C1 ← r

B-Tree-Split-Child (s, I, r)

B-Tree-Insert-Non full (s, k)

else

B - Tree-Insert-Non full (r, k)

To carry on an insertion on B-tree, the proper node for the key has to be located. Next, the key has to be inserted into the node.

If the node is not full prior to the insertion, then no special action is needed.

If node is full, then the node has to be split to make room for the new key. As splitting the node results in moving one key to the parent node, the parent node ha not be full. Else, another split operation is required.

This procedure may repeat all the way up to the root and may need splitting the root node.


Related Discussions:- Operations on b-trees

Illustrate an example of algorithm, Illustrate an example of algorithm ...

Illustrate an example of algorithm Consider that an algorithm is a sequence of steps, not a program. You might use the same algorithm in different programs, or express same alg

What is algorithms optimality, What is algorithm's Optimality? Optimali...

What is algorithm's Optimality? Optimality  is  about  the  complexity  of  the  problem  that  algorithm  solves.  What  is  the  minimum amount  of  effort  any  algorithm  w

Example of binary search, Let us assume a file of 5 records that means n = ...

Let us assume a file of 5 records that means n = 5 And k is a sorted array of keys of those 5 records. Let key = 55, low = 0, high = 4 Iteration 1: mid = (0+4)/2 = 2

Algorithm, Describe different methods of developing algorithms with example...

Describe different methods of developing algorithms with examples.

Algorithm for the selection sort, Q. Give the algorithm for the selection s...

Q. Give the algorithm for the selection sort. Describe the behaviours of selection sort when the input given is already sorted.

Structure of an avl tree, Given is the structure of an AVL tree: struct ...

Given is the structure of an AVL tree: struct avl { struct node *left; int info; int bf; struct node *right; }; 2) A multiway tree of n order is an ord

Define min-heap, Define min-heap A min-heap is a complete binary tree i...

Define min-heap A min-heap is a complete binary tree in which each element is less than or equal to its children. All the principal properties of heaps remain valid for min-hea

Evaluation of arithmetic expressions, Stacks are often used in evaluation o...

Stacks are often used in evaluation of arithmetic expressions. An arithmetic expression contains operands & operators. Polish notations are evaluated through stacks. Conversions of

Random searching, write a program that find,search&replace a text string

write a program that find,search&replace a text string

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd