Operations on b-trees, Data Structure & Algorithms

Assignment Help:

Operations on B-Trees

Given are various operations which can be performed on B-Trees:

  • Search
  • Create
  • Insert

B-Tree does effort to minimize disk access and the nodes are usually stored on disk

All the nodes are supposed to be stored into secondary storage instead of primary storage. All references to a given node are preceded through a read operation. Likewise, once a node is changed and it is no longer required, it has to be written out to secondary storage with write operation.

Given is the algorithm for searching a B-tree:

B-Tree Search (x, k)

i < - 1

while i < = n [x] and k > keyi[x]

do i ← i + 1

if i < = n [x] and k = key1 [x]

then return (x, i)

if leaf [x]

then return NIL

else Disk - Read (ci[x])

return B - Tree Search (Ci[x], k)

The search operation is alike to binary tree. Instead of selecting between a left and right child as in binary tree, a B-tree search have to make an n-way choice.

The right child is selected by performing a linear search of the values into the node. After determining the value greater than or equal to desired value, the child pointer to the instantaneous left to that value is followed.

The exact running time of search operation based upon the height of the tree. Given is the algorithm for the creation of a B-tree:

B-Tree Create (T)

x ← Allocate-Node ( )

 Leaf [x] ← True

n [x] ← 0

Disk-write (x)

root [T] ← x

 

The above denoted algorithm creates an empty B-tree through allocating a new root which has no keys and is a leaf node.

Given is the algorithm for insertion into a B-tree:

B-Tree Insert (T,K)

r ← root (T)

if n[r] = 2t - 1

then S ← Allocate-Node ( )

root[T] ← S

leaf [S] ← FALSE

n[S] ← 0

C1 ← r

B-Tree-Split-Child (s, I, r)

B-Tree-Insert-Non full (s, k)

else

B - Tree-Insert-Non full (r, k)

To carry on an insertion on B-tree, the proper node for the key has to be located. Next, the key has to be inserted into the node.

If the node is not full prior to the insertion, then no special action is needed.

If node is full, then the node has to be split to make room for the new key. As splitting the node results in moving one key to the parent node, the parent node ha not be full. Else, another split operation is required.

This procedure may repeat all the way up to the root and may need splitting the root node.


Related Discussions:- Operations on b-trees

Determine the stereo vision, Determine the stereo vision There is still...

Determine the stereo vision There is still one more major item missing, before we can look at a computer display or plot and perceive it just as we see a real object, namely th

Tradeoff between space and time complexity, We might sometimes seek a trade...

We might sometimes seek a tradeoff among space & time complexity. For instance, we may have to select a data structure which requires a lot of storage to reduce the computation tim

Differentiate between nonpersistent and 1-persistent, Differentiate between...

Differentiate between Nonpersistent and 1-persistent Nonpersistent: If the medium is idle, transmit; if the medium is busy, wait an amount of time drawn from a probability dist

Bubble sort, In this sorting algorithm, multiple swapping occurs in one pas...

In this sorting algorithm, multiple swapping occurs in one pass. Smaller elements move or 'bubble' up to the top of the list, so the name given to the algorithm. In this method,

Define tractable and intractable problems, Define tractable and intractable...

Define tractable and intractable problems Problems that can be solved in polynomial time are known as tractable problems, problems that cannot be solved in polynomial time are

Conversion of forest into tree, Conversion of Forest into Tree A binary...

Conversion of Forest into Tree A binary tree may be used to show an entire forest, since the next pointer in the root of a tree can be used to point to the next tree of the for

Data structure for representing numbers, Your first task will be to come up...

Your first task will be to come up with an appropriate data structure for representing numbers of arbitrary potential length in base 215. You will have to deal with large negative

The search trees are abstract data types, the above title please send give ...

the above title please send give for the pdf file and word file

Mapping constain, one to many one to one many to many many to one

one to many one to one many to many many to one

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd