Operations on b-trees, Data Structure & Algorithms

Assignment Help:

Operations on B-Trees

Given are various operations which can be performed on B-Trees:

  • Search
  • Create
  • Insert

B-Tree does effort to minimize disk access and the nodes are usually stored on disk

All the nodes are supposed to be stored into secondary storage instead of primary storage. All references to a given node are preceded through a read operation. Likewise, once a node is changed and it is no longer required, it has to be written out to secondary storage with write operation.

Given is the algorithm for searching a B-tree:

B-Tree Search (x, k)

i < - 1

while i < = n [x] and k > keyi[x]

do i ← i + 1

if i < = n [x] and k = key1 [x]

then return (x, i)

if leaf [x]

then return NIL

else Disk - Read (ci[x])

return B - Tree Search (Ci[x], k)

The search operation is alike to binary tree. Instead of selecting between a left and right child as in binary tree, a B-tree search have to make an n-way choice.

The right child is selected by performing a linear search of the values into the node. After determining the value greater than or equal to desired value, the child pointer to the instantaneous left to that value is followed.

The exact running time of search operation based upon the height of the tree. Given is the algorithm for the creation of a B-tree:

B-Tree Create (T)

x ← Allocate-Node ( )

 Leaf [x] ← True

n [x] ← 0

Disk-write (x)

root [T] ← x

 

The above denoted algorithm creates an empty B-tree through allocating a new root which has no keys and is a leaf node.

Given is the algorithm for insertion into a B-tree:

B-Tree Insert (T,K)

r ← root (T)

if n[r] = 2t - 1

then S ← Allocate-Node ( )

root[T] ← S

leaf [S] ← FALSE

n[S] ← 0

C1 ← r

B-Tree-Split-Child (s, I, r)

B-Tree-Insert-Non full (s, k)

else

B - Tree-Insert-Non full (r, k)

To carry on an insertion on B-tree, the proper node for the key has to be located. Next, the key has to be inserted into the node.

If the node is not full prior to the insertion, then no special action is needed.

If node is full, then the node has to be split to make room for the new key. As splitting the node results in moving one key to the parent node, the parent node ha not be full. Else, another split operation is required.

This procedure may repeat all the way up to the root and may need splitting the root node.


Related Discussions:- Operations on b-trees

Explain the memory function method, Explain the Memory Function method ...

Explain the Memory Function method The Memory Function method seeks to combine strengths of the top  down and bottom-up approaches  to  solving  problems  with  overlapping  su

Write stream analogues of list processing functions, (a) Write (delay ) as...

(a) Write (delay ) as a special form for (lambda () ) and (force ), as discussed in class. (b) Write (stream-cons x y) as a special form, as discussed in class. (c) Write

Write an algorithm insert, Q. Write an algorithm INSERT which takes a point...

Q. Write an algorithm INSERT which takes a pointer to a sorted list and a pointer to a node and inserts the node into its correct position or place in the list.  Ans: /* s

Need it urgently, Write an assembly program to separate the number of posit...

Write an assembly program to separate the number of positive numbers and negative numbers from a given series of signed numbers.

Program segment for insertion of an element into the queue, Program: Progra...

Program: Program segment for insertion of an element into the queue add(int value) { struct queue *new; new = (struct queue*)malloc(sizeof(queue)); new->value = val

Circular linklist, write an algorithm to insert an element at the beginning...

write an algorithm to insert an element at the beginning of a circular linked list?

Two - way merge sort, Merge sort is also one of the 'divide & conquer' clas...

Merge sort is also one of the 'divide & conquer' classes of algorithms. The fundamental idea in it is to split the list in a number of sublists, sort each of these sublists & merge

What is Oscillating Sort?, For the Oscillating sort to be applied, it is ne...

For the Oscillating sort to be applied, it is necessary for the tapes to be readable in both directions and able to be quickly reversed. The oscillating sort is superior to the po

Basic organization of computer system, what happen''s in my computer when ...

what happen''s in my computer when i input any passage

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd