Open belt drive, Mechanical Engineering

Assignment Help:

Open belt drive:

An open belt drive connects the two pulleys 120cm and 50cm diameter on parallel shafts which are apart 4m. The maximum tension in belt is 1855.3N. Coefficient of the friction is 0.3. The driver pulley having diameter 120cm runs at 200rpm.
Calculate
(i) The power transmitted
(ii) Torque on each shafts.

Sol: Given data:

D1  = Diameter of the driver = 120cm = 1.2m

R1  = Radius of the driver = 0.6m

N1  = Speed of the driver in R.P.M. = 200RPM

D2  = Diameter of the driven or Follower = 50cm = 0.5m

R2  = Radius of the driven or Follower = 0.25m

X = Distance between the centers of two pulleys = 4m

µ = Coefficient of friction = 0.3

T1  = Tension in the tight side of the belt = 1855.3N Calculation for power transmitting:

Let

P = The maximum power transmitted by belt drive

= (T1-T2).V/1000 KW                                                                                                       ...(i)

Here,

T2  = Tension in slack side of belt

V = Velocity of the belt in m/sec.

= pDN/60 m/sec, D is in meter and N is in Rotation per minute                                                ...(ii)

For T2,

We use relation Ratio of belt tension = T1/T2  = eµθ                                                                                              ...(iii)

But angle of contact is not given,

let

θ = Angle of contact and, θ = Angle of lap

for the open belt, Angle of contact (θ) = P - 2a                                                                               ...(iv)

Sina = (r1  - r2)/X = (0.6 - 0.25)/4

a = 5.02°                                                                                                                             ...(v)

By using the equation (iii),

θ = P - 2a = 180 - 2 X 5.02 = 169.96°

= 169.96° X P/180 = 2.97 rad                                                                                ...(iv)

Now by using the relation (iii)

1855.3/T2 = e(0.3)(2.967)

T2 = 761.8N                                                                                                                        ...(vii)

For finding velocity, using equation (ii)

V = (3.14 X 1.2 X 200)/60 = 12.56 m/sec                                                              ...(viii)

For finding Power, using the equation (i)

P = (1855.3 - 761.8) X 12.56

P = 13.73 KW                                                            .......ANS

We know that,

1. Torque exerted on driving pulley = (T1  - T2).R1

= (1855.3 - 761.8) X 0.6

= 656.1Nm                                                               .......ANS

2. Torque exerted on driven pulley   = (T1  - T2).R2

= (1855.3 - 761.8) X 0.25

= 273.4.1Nm                                                            .......ANS


Related Discussions:- Open belt drive

Residual stress and deformation in aluminum, deformation and stress in alum...

deformation and stress in aluminum 6061 after extrusion

Springs, write notes on close-coiled springs ,open-coiled springs semi ell...

write notes on close-coiled springs ,open-coiled springs semi elliptical leaf springs ,quarter elliptical leaf springs .how to determine shear stress deflection stress energy and

Calculate the suitable diameter for a solid shaft, A shaft is hinghed by tw...

A shaft is hinghed by two bearings placed 1.0 m apart. A 600mm diameter pulley is mounted at a distance of 300 mm to the right of left hand bearing and this operates a pulley direc

Type of defects and their significance, TYPE OF DEFECTS AND THEIR SIGNIFICA...

TYPE OF DEFECTS AND THEIR SIGNIFICANCE   Defects in weldments in general can be classified as follows: I. Defects involving inadequate bonding Lack of fusion Incom

Can you implement compatibility test, Q. Can you implement Compatibility te...

Q. Can you implement Compatibility test ? This test indicates the decrease in height of a mass of sand in a specimen tube with respect to its original height, under the actio

Foundary, impartance of moulding sand

impartance of moulding sand

Shear moment, Calculate and draw the Shear force and Bending moment diagram...

Calculate and draw the Shear force and Bending moment diagrams for the loaded beam and determine the maximum moment M and its location x from left end.

Safety benefits - industrial safety, Safety Benefits - Industrial Safety ...

Safety Benefits - Industrial Safety An industry or a company which follows safety programmes is benefitted in several ways. The benefits are shared among employer and employee

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd