Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
One-to-one function: A function is called one-to-one if not any two values of x produce the same y. Mathematically specking, this is the same as saying,
f ( x1 ) ≠ f ( x2 )
whenever x1 ≠ x2
Thus, a function is one-to-one if whenever we plug distinct values into the function we get different function values. Sometimes it is simpler to understand this definition if we illustrates a function that isn't one-to-one.
Let's take a look at a function which isn't one-to-one. The function f ( x )= x2 is not one-to-one since both f ( -2) = 4 and f ( 2) = 4 . In other terms there are two different values of x that generate the same value of y. Note down that we can turn f ( x ) = x2 into a one-to-one function if we limit ourselves to 0 ≤ x <∞ . It can sometimes be done with functions.
Illustrating that a function is one-to-one is frequently tedious and/or difficult. For the most part we are going to suppose that the functions which we're going to be dealing with in this course are either one-to-one or we have limited the domain of the function to get it to be a one-to-one function.
Now, let's formally define just what inverse functions are.
Polynomials in two variables Let's take a look at polynomials in two variables. Polynomials in two variables are algebraic expressions containing terms in the form ax n y m
Mike sells on the average 15 newspapers per week (Monday – Friday). Find the probability that 2.1 In a given week he will sell all the newspapers
how to sketch feasible set
Here we know x can only be 1 or -1. so if it is 1 ans is 2. if x is -1, for n even ans will be 2 if x is -1 and n is odd ans will ne -2. so we can see evenfor negative x also an
what is the consective sum for 2+3
how to change order and variable in multiple integral
what is 24 diveded by 3
solve question
shares and dividend
So far we have considered differentiation of functions of one independent variable. In many situations, we come across functions with more than one independent variable
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd