One-to-one function, Mathematics

Assignment Help:

One-to-one function: A function is called one-to-one if not any two values of x produce the same y.  Mathematically specking, this is the same as saying,

 f ( x1 ) ≠ f ( x2 )

whenever  x1 ≠ x2

Thus, a function is one-to-one if whenever we plug distinct values into the function we get different function values. Sometimes it is simpler to understand this definition if we illustrates a function that isn't one-to-one.

 Let's take a look at a function which isn't one-to-one.  The function f ( x )= x2  is not one-to-one since both f ( -2) = 4 and f ( 2) = 4 .  In other terms there are two different values of x that generate the same value of y.  Note down that we can turn f ( x ) = x2  into a one-to-one function if we limit ourselves to 0 ≤ x <∞ .  It can sometimes be done with functions.

Illustrating that a function is one-to-one is frequently tedious and/or difficult.  For the most part we are going to suppose that the functions which we're going to be dealing with in this course are either one-to-one or we have limited the domain of the function to get it to be a one-to-one function.

Now, let's formally define just what inverse functions are.


Related Discussions:- One-to-one function

Steps for alternating series test, Steps for Alternating Series Test Su...

Steps for Alternating Series Test Suppose that we have a series ∑a n and either a n = (-1) n b n or a n = (-1) n+1 b n where b n > 0 for all n.  Then if,   1.

Percentage, how do you you find 40% if you 35 out of 40

how do you you find 40% if you 35 out of 40

Hexagon, how many sides does a regular hexagon have?

how many sides does a regular hexagon have?

#titl., class 10 Q.trigonometric formula of 1 term

class 10 Q.trigonometric formula of 1 term

Mathematic Modeling, Ask question I have 2 problems I need them after 7 hou...

Ask question I have 2 problems I need them after 7 hours

Minima, Minima, Maxima and points of inflexion a)      Test for rela...

Minima, Maxima and points of inflexion a)      Test for relative maximum Consider the given function of x whose graph is presented by the figure given below

Logarithmic functions, y=log4(x). i am unsure what this graph is supposed t...

y=log4(x). i am unsure what this graph is supposed to look like?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd