Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
One-to-one function: A function is called one-to-one if not any two values of x produce the same y. Mathematically specking, this is the same as saying,
f ( x1 ) ≠ f ( x2 )
whenever x1 ≠ x2
Thus, a function is one-to-one if whenever we plug distinct values into the function we get different function values. Sometimes it is simpler to understand this definition if we illustrates a function that isn't one-to-one.
Let's take a look at a function which isn't one-to-one. The function f ( x )= x2 is not one-to-one since both f ( -2) = 4 and f ( 2) = 4 . In other terms there are two different values of x that generate the same value of y. Note down that we can turn f ( x ) = x2 into a one-to-one function if we limit ourselves to 0 ≤ x <∞ . It can sometimes be done with functions.
Illustrating that a function is one-to-one is frequently tedious and/or difficult. For the most part we are going to suppose that the functions which we're going to be dealing with in this course are either one-to-one or we have limited the domain of the function to get it to be a one-to-one function.
Now, let's formally define just what inverse functions are.
Solve 4 sin 2 ( t ) - 3 sin ( t /3)= 1 . Solution Before solving this equation let's solve clearly unrelated equation. 4x 2 - 3x = 1 ⇒ 4x 2 - 3x -1 = ( 4x + 1) ( x
A man is known to speak truth 3 out of 4 times.He throws adie and reports it is a six. Find the probability that it is actually a six. Solution) we can get a six if a man s
square root 2 on the number line
Determine all possible solutions to the subsequent IVP. y' = y ? y(0) = 0 Solution : First, see that this differential equation does NOT satisfy the conditions of the th
would like explaination on how to do them
Linear Equations - Resolving and identifying linear first order differential equations. Separable Equations - Resolving and identifying separable first order differential
If tanA+sinA=m and tanA-sinA=n, show that m 2 -n 2 = 4√mn Ans: TanA + SinA = m TanA - SinA = n. m 2 -n 2 =4√mn . m 2 -n 2 = (TanA + SinA) 2 -(TanA - SinA) 2
Method to solve Simultaneous Equations with two or more than two variables Method Above we have seen equations wherein we are required to find the value of the
3 3/4+(1 1/49*7/10)
What is Terminology of Quadratic Functions ? The function in x given by: F(x) = ax 2 + bx + c, where a 0 is called a quadratic function. The graph of a quadratic function is
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd