Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
One-to-one function: A function is called one-to-one if not any two values of x produce the same y. Mathematically specking, this is the same as saying,
f ( x1 ) ≠ f ( x2 )
whenever x1 ≠ x2
Thus, a function is one-to-one if whenever we plug distinct values into the function we get different function values. Sometimes it is simpler to understand this definition if we illustrates a function that isn't one-to-one.
Let's take a look at a function which isn't one-to-one. The function f ( x )= x2 is not one-to-one since both f ( -2) = 4 and f ( 2) = 4 . In other terms there are two different values of x that generate the same value of y. Note down that we can turn f ( x ) = x2 into a one-to-one function if we limit ourselves to 0 ≤ x <∞ . It can sometimes be done with functions.
Illustrating that a function is one-to-one is frequently tedious and/or difficult. For the most part we are going to suppose that the functions which we're going to be dealing with in this course are either one-to-one or we have limited the domain of the function to get it to be a one-to-one function.
Now, let's formally define just what inverse functions are.
There are five horseracing tracks in Kentucky. The Kentucky legislature allows only one track to be open at a time. How does this restriction affect the price the track can charge
#question.Explain its nature and how it influences the integrated marketing communications mix and distinguish between tactical and strategic use of integrated marketing communicat
If a differential equation does have a solution how many solutions are there? As we will see ultimately, this is possible for a differential equation to contain more than one s
The midpoint of the line joining (2a, 4) and (-2, 3b) is (1, 2a +1).Find the values of a & b. (Ans: a = 2, b = 2) Ans : A(2a, 4) P(1, 2a + 1) B(-2,
Find the perimeter of the figure, where AED is a semi-circle and ABCD is a rectangle. (Ans : 76cm) Ans: Perimeter of the fig = 20 + 14 + 20 + length of the arc (AED
Assumptions and Application of T Distribution Assumptions of t distribution 1. The sample observations are random 2. Samples are drawn from general distribution 3.
w/ You could use this sample code to test your C functions // Please make appropriate changes to use this for C++. // Following main function contains 3 representative test cases
Q. Sum and Difference Identities? Ans. These six sum and difference identities express trigonometric functions of (u ± v) as functions of u and v alone.
estion..#qu
how can i easily solve the trignometry question?
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd