One-to-one function, Mathematics

Assignment Help:

One-to-one function: A function is called one-to-one if not any two values of x produce the same y.  Mathematically specking, this is the same as saying,

 f ( x1 ) ≠ f ( x2 )

whenever  x1 ≠ x2

Thus, a function is one-to-one if whenever we plug distinct values into the function we get different function values. Sometimes it is simpler to understand this definition if we illustrates a function that isn't one-to-one.

 Let's take a look at a function which isn't one-to-one.  The function f ( x )= x2  is not one-to-one since both f ( -2) = 4 and f ( 2) = 4 .  In other terms there are two different values of x that generate the same value of y.  Note down that we can turn f ( x ) = x2  into a one-to-one function if we limit ourselves to 0 ≤ x <∞ .  It can sometimes be done with functions.

Illustrating that a function is one-to-one is frequently tedious and/or difficult.  For the most part we are going to suppose that the functions which we're going to be dealing with in this course are either one-to-one or we have limited the domain of the function to get it to be a one-to-one function.

Now, let's formally define just what inverse functions are.


Related Discussions:- One-to-one function

Slope-intercept form, Slope-intercept form The ultimate special form of...

Slope-intercept form The ultimate special form of the equation of the line is possibly the one that most people are familiar with.  It is the slope-intercept form.  In this if

Vectors, apllication in business and economics

apllication in business and economics

Evaluate infinity limit into the polynomial , Example   Evaluate following...

Example   Evaluate following limits. Solution Here our first thought is probably to just "plug" infinity into the polynomial & "evaluate" every term to finds out the

Minimum and maximum values, Minimum and Maximum Values : Several applicati...

Minimum and Maximum Values : Several applications in this chapter will revolve around minimum & maximum values of a function.  Whereas we can all visualize the minimum & maximum v

Finance, Determine the value of a $1800 investment after six years at 9.3% ...

Determine the value of a $1800 investment after six years at 9.3% per year, simple interest

Find out arc length - applications of integrals, Find out the length of y =...

Find out the length of y = ln(sec x ) between 0 x π/4. Solution In this example we'll need to use the first ds as the function is in the form y = f (x). So, let us g

Determine the area of the regular octagon, Determine the area of the regula...

Determine the area of the regular octagon with the following measurements. a. 224 square units b. 112 square units c. 84 square units d. 169 square units b. See

Trigonometry, A 25 foot ladder just reaches the top of a house and forms an...

A 25 foot ladder just reaches the top of a house and forms an angle of 41.5 degrees with the wall of the house. How tall is the house?

Fraction, sarah has 12 gel pen. she gave 3/4. how many she have

sarah has 12 gel pen. she gave 3/4. how many she have

Derivative and differentiation, Derivative and Differentiation The pro...

Derivative and Differentiation The process of acquiring the derivative of a function or slope or gradient is referred to as differentiation or derivation. The derivative is de

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd