Obligatory application and interpretation problem, Mathematics

Assignment Help:

Obligatory application/interpretation problem : Next, we need to do our obligatory application/interpretation problem so we don't forget about them.

Example: Assume that the position of an object is given by  s (t ) = tet

Does the object stop moving ever?

Solution : First we will require the derivative. We require this to find out if the object ever stops moving as at that point (provided there is one) the velocity is going to zero and recall that the derivative of the position functions is the velocity of the object.

The derivative is,                            s′ (t ) = et  + tet  = (1 + t ) et

Hence, we have to determine if the derivative is ever zero. To do this we will have to solve,

                                                                    (1 + t ) et  = 0

Now, we already know that exponential functions are never zero and hence this will only be zero at t = -1 . Thus, if we will allow negative values of t then the object will stop moving once at t = -1 .

If we aren't going to let negative values of t then the object will never stop moving.

We should look at couple of derivatives to make sure that we don't confuse the two. The two derivatives are,

d ( xn )/dx = nx n -1                           Power Rule

d (a x )/ dx = a x ln a                          Derivative of an exponential function

This is important to note that with the Power rule the exponent should be a constant and the base should be a variable whereas we require exactly the opposite for the derivative of an exponential function.  For exponential function the exponent should be a variable and the base should be a constant.


Related Discussions:- Obligatory application and interpretation problem

Solution process of linear differential equations, For a first order linear...

For a first order linear differential equation the solution process is as given below: 1. Place the differential equation in the correct initial form, (1). 2. Determine the i

Determines the first four derivatives of y = cos x, Example    determines t...

Example    determines the first four derivatives for following.                                                                  y = cos x Solution: Again, let's just do so

Geometry, how do you do rotations

how do you do rotations

The ratio of boys to girls at the dance was 3:4, The ratio of boys to girls...

The ratio of boys to girls at the dance was 3:4. There were 60 girls at the dance. How many boys were at the dance? Use a proportion comparing boys to girls at the dance. Boys/

Working definition of continuity , "Working" definition of continuity ...

"Working" definition of continuity A function is continuous in an interval if we can draw the graph from beginning point to finish point without ever once picking up our penci

Example of mixing problems, A 1500 gallon tank primarily holds 600 gallons ...

A 1500 gallon tank primarily holds 600 gallons of water along with 5 lbs of salt dissolved into it. Water enters the tank at a rate of 9 gal/hr and the water entering the tank has

Unit rates, which shows the rate 12 inches of rain in 6 hours as a unit rat...

which shows the rate 12 inches of rain in 6 hours as a unit rate

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd