Obligatory application and interpretation problem, Mathematics

Assignment Help:

Obligatory application/interpretation problem : Next, we need to do our obligatory application/interpretation problem so we don't forget about them.

Example: Assume that the position of an object is given by  s (t ) = tet

Does the object stop moving ever?

Solution : First we will require the derivative. We require this to find out if the object ever stops moving as at that point (provided there is one) the velocity is going to zero and recall that the derivative of the position functions is the velocity of the object.

The derivative is,                            s′ (t ) = et  + tet  = (1 + t ) et

Hence, we have to determine if the derivative is ever zero. To do this we will have to solve,

                                                                    (1 + t ) et  = 0

Now, we already know that exponential functions are never zero and hence this will only be zero at t = -1 . Thus, if we will allow negative values of t then the object will stop moving once at t = -1 .

If we aren't going to let negative values of t then the object will never stop moving.

We should look at couple of derivatives to make sure that we don't confuse the two. The two derivatives are,

d ( xn )/dx = nx n -1                           Power Rule

d (a x )/ dx = a x ln a                          Derivative of an exponential function

This is important to note that with the Power rule the exponent should be a constant and the base should be a variable whereas we require exactly the opposite for the derivative of an exponential function.  For exponential function the exponent should be a variable and the base should be a constant.


Related Discussions:- Obligatory application and interpretation problem

Cylinder, if the diametre of the cylinder is 3.6 foot and its length is4.6f...

if the diametre of the cylinder is 3.6 foot and its length is4.6foot,then its dimension is?

Exponential functions, Exponential Functions : We'll begin by looking at t...

Exponential Functions : We'll begin by looking at the exponential function,                                                              f ( x ) = a x We desire to differe

Quistins, define even and odd function state whether given function are eve...

define even and odd function state whether given function are even odd or neither 1 f x =sin x cos x 2 f x {x}=x +x3n #Minimum 100 words accepted#

The low temperature in Achorage, The low temperature in Anchorage, Alaska t...

The low temperature in Anchorage, Alaska today was negative four degrees. The low temperature in Los Angeles, California was sixty-three degreees. What is the difference in the two

Tutoring , hi, i was wondering how do you provide tutoring for math specifi...

hi, i was wondering how do you provide tutoring for math specifically discrete mathematics for computer science ? I want to get some help in understanding in the meantime about alg

Calculate values of kinetics , A reaction following first-order kinetics wa...

A reaction following first-order kinetics was studied by determining the reactant concentrations at equal time intervals. Each successive pair of concentrations, [A] o and [A] 1

Modeling - nonhomogeneous systems, Under this section we're going to go bac...

Under this section we're going to go back and revisit the concept of modeling only now we're going to look at this in light of the fact as we now understand how to solve systems of

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd