Obligatory application and interpretation problem, Mathematics

Assignment Help:

Obligatory application/interpretation problem : Next, we need to do our obligatory application/interpretation problem so we don't forget about them.

Example: Assume that the position of an object is given by  s (t ) = tet

Does the object stop moving ever?

Solution : First we will require the derivative. We require this to find out if the object ever stops moving as at that point (provided there is one) the velocity is going to zero and recall that the derivative of the position functions is the velocity of the object.

The derivative is,                            s′ (t ) = et  + tet  = (1 + t ) et

Hence, we have to determine if the derivative is ever zero. To do this we will have to solve,

                                                                    (1 + t ) et  = 0

Now, we already know that exponential functions are never zero and hence this will only be zero at t = -1 . Thus, if we will allow negative values of t then the object will stop moving once at t = -1 .

If we aren't going to let negative values of t then the object will never stop moving.

We should look at couple of derivatives to make sure that we don't confuse the two. The two derivatives are,

d ( xn )/dx = nx n -1                           Power Rule

d (a x )/ dx = a x ln a                          Derivative of an exponential function

This is important to note that with the Power rule the exponent should be a constant and the base should be a variable whereas we require exactly the opposite for the derivative of an exponential function.  For exponential function the exponent should be a variable and the base should be a constant.


Related Discussions:- Obligatory application and interpretation problem

Elliptic paraboloid - three dimensional spaces, Elliptic Paraboloid Th...

Elliptic Paraboloid The equation which is given here is the equation of an elliptic paraboloid. x 2 /a 2 + y 2 /b 2 = z/c Like with cylinders this has a cross section

Solution process of linear differential equations, For a first order linear...

For a first order linear differential equation the solution process is as given below: 1. Place the differential equation in the correct initial form, (1). 2. Determine the i

Core concepts, define marketing and show its core concepts

define marketing and show its core concepts

Parenteral calculations, 850ml is to be administered to a person over 8 hou...

850ml is to be administered to a person over 8 hours using a drop factor of 20 drops/ml what is the flow rate in gtts/min ?

Explain equivalent fractions, Explain Equivalent Fractions ? Two fracti...

Explain Equivalent Fractions ? Two fractions can look different and still be equal. Different fractions that represent the same amount are called equivalent fractions. Ar

Find inverse laplace transform, Question: Find Inverse Laplace Transfor...

Question: Find Inverse Laplace Transform of the following (a) F(s) = (s-1)/(2s 2 +8s+13)     (b) F(s)= e -4s /(s 2 +1) + (1/s 3 )

A graph with a positive slope, A graph with a positive slope shows that the...

A graph with a positive slope shows that the variables depicted on the axes goes in the similar directions.

Actual solution to a differential equation, The actual solution is the spec...

The actual solution is the specific solution to a differential equation which not only satisfies the differential equation, although also satisfies the specified initial conditions

Find the equation to the pair of lines - coordinate geometry, 1. Find the n...

1. Find the number of zeroes of the polynomial y = f(x) whose graph is given in figure. 2 Find the circumcentre of the triangle whose vertices are (-2, -3), (-1, 0) and (7,-6).

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd