Obligatory application and interpretation problem, Mathematics

Assignment Help:

Obligatory application/interpretation problem : Next, we need to do our obligatory application/interpretation problem so we don't forget about them.

Example: Assume that the position of an object is given by  s (t ) = tet

Does the object stop moving ever?

Solution : First we will require the derivative. We require this to find out if the object ever stops moving as at that point (provided there is one) the velocity is going to zero and recall that the derivative of the position functions is the velocity of the object.

The derivative is,                            s′ (t ) = et  + tet  = (1 + t ) et

Hence, we have to determine if the derivative is ever zero. To do this we will have to solve,

                                                                    (1 + t ) et  = 0

Now, we already know that exponential functions are never zero and hence this will only be zero at t = -1 . Thus, if we will allow negative values of t then the object will stop moving once at t = -1 .

If we aren't going to let negative values of t then the object will never stop moving.

We should look at couple of derivatives to make sure that we don't confuse the two. The two derivatives are,

d ( xn )/dx = nx n -1                           Power Rule

d (a x )/ dx = a x ln a                          Derivative of an exponential function

This is important to note that with the Power rule the exponent should be a constant and the base should be a variable whereas we require exactly the opposite for the derivative of an exponential function.  For exponential function the exponent should be a variable and the base should be a constant.


Related Discussions:- Obligatory application and interpretation problem

What is the cost to generate, The production costs per week for generating ...

The production costs per week for generating x widgets is given by, C ( x ) = 500 + 350 x - 0.09 x 2 ,         0 ≤ x ≤ 1000 Answer following questions.  (a) What is the c

Slope, One of the more significant ideas that we'll be discussing in this s...

One of the more significant ideas that we'll be discussing in this section is slope. The slope of a line is a measure of the steepness of any particular line and it can also be uti

Explain multiples, Explain Multiples ? When a whole number is multiplie...

Explain Multiples ? When a whole number is multiplied by another whole number, the results you get are multiples of the whole numbers. For example,  To find the first four mult

Solving whole-number riddles, I am greater than 30 and less than 40. The su...

I am greater than 30 and less than 40. The sum of my digits is less than 5. who am I?

Innovation, In the innovations algorithm, show that for each n = 2, the inn...

In the innovations algorithm, show that for each n = 2, the innovation Xn - ˆXn is uncorrelated with X1, . . . , Xn-1. Conclude that Xn - ˆXn is uncorrelated with the innovations X

Money, how do you add 1,ooo and 100?

how do you add 1,ooo and 100?

Naming fractions greater than 1, the 10 miles assigned to the chess club st...

the 10 miles assigned to the chess club start at the 10 mile point and go to the 20 mile point when the chess club members have cleaned 5/8 of their 10 mile section between which m

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd