Obligatory application and interpretation problem, Mathematics

Assignment Help:

Obligatory application/interpretation problem : Next, we need to do our obligatory application/interpretation problem so we don't forget about them.

Example: Assume that the position of an object is given by  s (t ) = tet

Does the object stop moving ever?

Solution : First we will require the derivative. We require this to find out if the object ever stops moving as at that point (provided there is one) the velocity is going to zero and recall that the derivative of the position functions is the velocity of the object.

The derivative is,                            s′ (t ) = et  + tet  = (1 + t ) et

Hence, we have to determine if the derivative is ever zero. To do this we will have to solve,

                                                                    (1 + t ) et  = 0

Now, we already know that exponential functions are never zero and hence this will only be zero at t = -1 . Thus, if we will allow negative values of t then the object will stop moving once at t = -1 .

If we aren't going to let negative values of t then the object will never stop moving.

We should look at couple of derivatives to make sure that we don't confuse the two. The two derivatives are,

d ( xn )/dx = nx n -1                           Power Rule

d (a x )/ dx = a x ln a                          Derivative of an exponential function

This is important to note that with the Power rule the exponent should be a constant and the base should be a variable whereas we require exactly the opposite for the derivative of an exponential function.  For exponential function the exponent should be a variable and the base should be a constant.


Related Discussions:- Obligatory application and interpretation problem

Compute the dot product for the equation, Compute the dot product for each ...

Compute the dot product for each of the subsequent equation  (a) v → = 5i → - 8j → , w → = i → + 2j →  (b) a → = (0, 3, -7) , b → = (2, 3,1) Solution (a) v →

Expressing the interest rate as a decimal fraction, Total Contribution per ...

Total Contribution per Year for next 10yeras =$1000+$800 =$1800 So Total Future fund Vaule  =$1800*(1+1.073+power(1.073,2)+ power(1.073,2)+ power(1.073,3)+ power(1.073,4)+ power

Properties of logarithms, Properties of Logarithms 1. log a x...

Properties of Logarithms 1. log a xy = log a x + log a y 2.  = log a x - log a y 3. log a x n   = n log

Triganometry, Ask question #Minimum 100 words what is the hypotunus of a r...

Ask question #Minimum 100 words what is the hypotunus of a right bangled triangle a=5@ b=25 find c accwhepted#

#title.heat loss in a cylindrical pipe., briefly explain how the famous equ...

briefly explain how the famous equation for the loss of heat in a cylindrical pipe is derived

Rectilinear figures, what are rctilinear figures ? types of rectilinear fig...

what are rctilinear figures ? types of rectilinear figures and their propertiees.

Explain id amortisation is proper impairment will not arise, If depreciatio...

If depreciation/amortisation is done properly, impairment adjustments will not arise.   Required: Do you agree with the above statement? Critically and fully explain your

Polynomials, sum of zero of polynomial x2-2x+1is equal to sum of zero of po...

sum of zero of polynomial x2-2x+1is equal to sum of zero of polynomial x3-2x+x then find the product of all the three zero of the second polynomial

Give the introduction to ratios and proportions, Give the introduction to R...

Give the introduction to Ratios and Proportions? A ratio represents a comparison between two values. A ratio of two numbers can be expressed in three ways: A ratio of "one t

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd