Obligatory application and interpretation problem, Mathematics

Assignment Help:

Obligatory application/interpretation problem : Next, we need to do our obligatory application/interpretation problem so we don't forget about them.

Example: Assume that the position of an object is given by  s (t ) = tet

Does the object stop moving ever?

Solution : First we will require the derivative. We require this to find out if the object ever stops moving as at that point (provided there is one) the velocity is going to zero and recall that the derivative of the position functions is the velocity of the object.

The derivative is,                            s′ (t ) = et  + tet  = (1 + t ) et

Hence, we have to determine if the derivative is ever zero. To do this we will have to solve,

                                                                    (1 + t ) et  = 0

Now, we already know that exponential functions are never zero and hence this will only be zero at t = -1 . Thus, if we will allow negative values of t then the object will stop moving once at t = -1 .

If we aren't going to let negative values of t then the object will never stop moving.

We should look at couple of derivatives to make sure that we don't confuse the two. The two derivatives are,

d ( xn )/dx = nx n -1                           Power Rule

d (a x )/ dx = a x ln a                          Derivative of an exponential function

This is important to note that with the Power rule the exponent should be a constant and the base should be a variable whereas we require exactly the opposite for the derivative of an exponential function.  For exponential function the exponent should be a variable and the base should be a constant.


Related Discussions:- Obligatory application and interpretation problem

MATLAB, Program of "surface of revolution" in MATLAB

Program of "surface of revolution" in MATLAB

Find the least number that is divisible by all numbers, Find the  leas...

Find the  least  number that  is  divisible by all  numbers between 1  and  10  (both inclusive). Ans: The required number is the LCM of 1,2,3,4,5,6,7,8,9,10 ∴ LCM = 2  × 2

Reflection matrix, how do i solve reflection matrix just looking at the num...

how do i solve reflection matrix just looking at the numbers in a matrix

Inverse functions, Inverse Functions : In the last instance from the pr...

Inverse Functions : In the last instance from the previous section we looked at the two functions   f ( x ) = 3x - 2 and g ( x ) = x /3+ 2/3 and saw that ( f o g ) ( x )

Rounding, what is the nearest ten thousand of 92,892?

what is the nearest ten thousand of 92,892?

Some general facts about lines, First, larger the number (ignoring any minu...

First, larger the number (ignoring any minus signs) the steeper the line.  Thus, we can use the slope to tell us something regarding just how steep a line is. Next, if the slope

Percentages, how to remember the formulas of this topic

how to remember the formulas of this topic

Evaluate integrals, Evaluate following integrals.  (a) ∫ 3e x + 5 cos x...

Evaluate following integrals.  (a) ∫ 3e x + 5 cos x -10 sec 2   x dx  (b) ( 23/ (y 2 + 1) + 6 csc y cot y + 9/ y dy Solution (a)    ∫ 3e x + 5 cos x -10 sec 2 x

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd