Obligatory application and interpretation problem, Mathematics

Assignment Help:

Obligatory application/interpretation problem : Next, we need to do our obligatory application/interpretation problem so we don't forget about them.

Example: Assume that the position of an object is given by  s (t ) = tet

Does the object stop moving ever?

Solution : First we will require the derivative. We require this to find out if the object ever stops moving as at that point (provided there is one) the velocity is going to zero and recall that the derivative of the position functions is the velocity of the object.

The derivative is,                            s′ (t ) = et  + tet  = (1 + t ) et

Hence, we have to determine if the derivative is ever zero. To do this we will have to solve,

                                                                    (1 + t ) et  = 0

Now, we already know that exponential functions are never zero and hence this will only be zero at t = -1 . Thus, if we will allow negative values of t then the object will stop moving once at t = -1 .

If we aren't going to let negative values of t then the object will never stop moving.

We should look at couple of derivatives to make sure that we don't confuse the two. The two derivatives are,

d ( xn )/dx = nx n -1                           Power Rule

d (a x )/ dx = a x ln a                          Derivative of an exponential function

This is important to note that with the Power rule the exponent should be a constant and the base should be a variable whereas we require exactly the opposite for the derivative of an exponential function.  For exponential function the exponent should be a variable and the base should be a constant.


Related Discussions:- Obligatory application and interpretation problem

Working definition of function, A function is an equation for which any x w...

A function is an equation for which any x which can be plugged into the equation will yield accurately one y out of the equation. There it is. i.e. the definition of functions w

Maths, what is the diameter of a circle

what is the diameter of a circle

Geometry, what shapes can go into a triangular prism

what shapes can go into a triangular prism

Oscar sold 2 glasses of milk for each 5 sodas he sold, Oscar sold 2 glasses...

Oscar sold 2 glasses of milk for each 5 sodas he sold. If he sold 10 glasses of milk, how many sodas did he sell? Set up a proportion along with milk/soda = 2/5 = 10x. Cross mu

Additionally functions in substitution rule, Substitution Rule Mostly ...

Substitution Rule Mostly integrals are fairly simple and most of the substitutions are quite simple. The problems arise in correctly getting the integral set up for the substi

Combined mean and standard deviation, Combined Mean And Standard Deviation ...

Combined Mean And Standard Deviation Occasionally we may need to combine 2 or more samples say A and B. Therefore it is essential to identify the new mean and the new standard

Exponential and geometric model, Exponential and Geometric Model Expo...

Exponential and Geometric Model Exponential model  y = ab x Take log of both sides log y = log a + log b x log y = log a + xlog b Assume log y = Y and log a

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd