Obligatory application and interpretation problem, Mathematics

Assignment Help:

Obligatory application/interpretation problem : Next, we need to do our obligatory application/interpretation problem so we don't forget about them.

Example: Assume that the position of an object is given by  s (t ) = tet

Does the object stop moving ever?

Solution : First we will require the derivative. We require this to find out if the object ever stops moving as at that point (provided there is one) the velocity is going to zero and recall that the derivative of the position functions is the velocity of the object.

The derivative is,                            s′ (t ) = et  + tet  = (1 + t ) et

Hence, we have to determine if the derivative is ever zero. To do this we will have to solve,

                                                                    (1 + t ) et  = 0

Now, we already know that exponential functions are never zero and hence this will only be zero at t = -1 . Thus, if we will allow negative values of t then the object will stop moving once at t = -1 .

If we aren't going to let negative values of t then the object will never stop moving.

We should look at couple of derivatives to make sure that we don't confuse the two. The two derivatives are,

d ( xn )/dx = nx n -1                           Power Rule

d (a x )/ dx = a x ln a                          Derivative of an exponential function

This is important to note that with the Power rule the exponent should be a constant and the base should be a variable whereas we require exactly the opposite for the derivative of an exponential function.  For exponential function the exponent should be a variable and the base should be a constant.


Related Discussions:- Obligatory application and interpretation problem

How many cubic centimetres of cork dust will be required?, A cylindrical ve...

A cylindrical vessel of diameter 14 cm and height 42 cm is fixed symmetrically inside a similar vessel of diameter 16 cm and height 42 cm. The total space between two vessels is fi

What could the dimensions of the floor be in terms of x, Harold is tiling a...

Harold is tiling a rectangular kitchen floor with an area that is expressed as x 2 + 6x + 5. What could the dimensions of the floor be in terms of x? Because area of a rectang

The mean value theorem for integrals of even and odd , The Mean Value Theor...

The Mean Value Theorem for Integrals If  f (x ) is a continuous function on [a,b] then there is a number c in [a,b] such as,                                    ∫ b a f ( x

Discrete-time signals as energy or power signals, Classify the following di...

Classify the following discrete-time signals as energy or power signals. If the signal is of energy type, find its energy. Otherwise, find the average power of the signal. X 1

Fraction, sarah has 12 gel pen. she gave 3/4. how many she have

sarah has 12 gel pen. she gave 3/4. how many she have

Close Figure, What is a close figure in plane?

What is a close figure in plane?

Volume and surface area, a conical hole drilled in a circular cylinder of h...

a conical hole drilled in a circular cylinder of height 12 and radius 5cm the height and radius of cone are also same find volume

Slope, #question.Find the slope of the line that passes through (7, 3) and ...

#question.Find the slope of the line that passes through (7, 3) and (9, 6). Simplify your answer and write it as a proper fraction, improper fraction, or integer. .

Equation: 4x^4+9x^4=64 , If 4x^4+9x^4=64 then the maximum value of x^2+y^2 ...

If 4x^4+9x^4=64 then the maximum value of x^2+y^2 is solution) From the eq. finding the value of x^2 and putting it in x^2 + y^2.we get 2nd eq. differentiating that and putting

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd