Obligatory application and interpretation problem, Mathematics

Assignment Help:

Obligatory application/interpretation problem : Next, we need to do our obligatory application/interpretation problem so we don't forget about them.

Example: Assume that the position of an object is given by  s (t ) = tet

Does the object stop moving ever?

Solution : First we will require the derivative. We require this to find out if the object ever stops moving as at that point (provided there is one) the velocity is going to zero and recall that the derivative of the position functions is the velocity of the object.

The derivative is,                            s′ (t ) = et  + tet  = (1 + t ) et

Hence, we have to determine if the derivative is ever zero. To do this we will have to solve,

                                                                    (1 + t ) et  = 0

Now, we already know that exponential functions are never zero and hence this will only be zero at t = -1 . Thus, if we will allow negative values of t then the object will stop moving once at t = -1 .

If we aren't going to let negative values of t then the object will never stop moving.

We should look at couple of derivatives to make sure that we don't confuse the two. The two derivatives are,

d ( xn )/dx = nx n -1                           Power Rule

d (a x )/ dx = a x ln a                          Derivative of an exponential function

This is important to note that with the Power rule the exponent should be a constant and the base should be a variable whereas we require exactly the opposite for the derivative of an exponential function.  For exponential function the exponent should be a variable and the base should be a constant.


Related Discussions:- Obligatory application and interpretation problem

Parametric equations and curves - polar coordinates, Parametric Equations a...

Parametric Equations and Curves Till to this point we have looked almost completely at functions in the form y = f (x) or x = h (y) and approximately all of the formulas that w

Differential equations, solve the differential equation 8yk+2-6yk+1+yk=9 ,k...

solve the differential equation 8yk+2-6yk+1+yk=9 ,k=0 given that Y0=1 and y1=3/2

Differentiate quotient rule functions, Example of quotient rule : Let's no...

Example of quotient rule : Let's now see example on quotient rule.  In this, unlike the product rule examples, some of these functions will require the quotient rule to get the de

Precalculus, Find the standard form of the equation of the parabola with a ...

Find the standard form of the equation of the parabola with a vertex at the origin and a focus at (0, -7).

VAM, applications of VAM.

applications of VAM.

Circle, a wheel revolves 360 deegre revolution in one minute .Find how many...

a wheel revolves 360 deegre revolution in one minute .Find how many radians will the wheel subtend in one second

Determine the solution to the differential equation, Determine the solution...

Determine the solution to the subsequent differential equation. dv/dt = 9.8 - 0.196v Solution Initially we require finding out the differential equation in the accurate

Probability, I have a question that hurts my head to work out. It is really...

I have a question that hurts my head to work out. It is really confusing for me. It sais " By the start of the 21st century, only 1 in 6 babies in America was born with blue eyes.

Find the value of x of an arithmetic progressions, Find the value of x if 2...

Find the value of x if 2x + 1, x 2 + x +1, 3 x 2 - 3 x +3 are consecutive terms of an AP. Ans:  a 2 -a 1 =  a 3 -a 2 ⇒   x 2 + x + 1-2 x - 1 = 3x 2 - 3x + 3- x

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd