Obligatory application and interpretation problem, Mathematics

Assignment Help:

Obligatory application/interpretation problem : Next, we need to do our obligatory application/interpretation problem so we don't forget about them.

Example: Assume that the position of an object is given by  s (t ) = tet

Does the object stop moving ever?

Solution : First we will require the derivative. We require this to find out if the object ever stops moving as at that point (provided there is one) the velocity is going to zero and recall that the derivative of the position functions is the velocity of the object.

The derivative is,                            s′ (t ) = et  + tet  = (1 + t ) et

Hence, we have to determine if the derivative is ever zero. To do this we will have to solve,

                                                                    (1 + t ) et  = 0

Now, we already know that exponential functions are never zero and hence this will only be zero at t = -1 . Thus, if we will allow negative values of t then the object will stop moving once at t = -1 .

If we aren't going to let negative values of t then the object will never stop moving.

We should look at couple of derivatives to make sure that we don't confuse the two. The two derivatives are,

d ( xn )/dx = nx n -1                           Power Rule

d (a x )/ dx = a x ln a                          Derivative of an exponential function

This is important to note that with the Power rule the exponent should be a constant and the base should be a variable whereas we require exactly the opposite for the derivative of an exponential function.  For exponential function the exponent should be a variable and the base should be a constant.


Related Discussions:- Obligatory application and interpretation problem

Two circles touch internally, Two circles touch internally at a point P and...

Two circles touch internally at a point P and from a point T on the common tangent at P, tangent segments TQ and TR are drawn to the two circles. Prove that TQ = TR. Given:

Phase transformations in binary system, Get the Delta H (Enthalpy) and Delt...

Get the Delta H (Enthalpy) and Delta V (Volume) of the both components below and compare by ratio.  You need to use clapeyron equation and also need to draw the graphs. S A LG

Accuray and Precision, If an instrument has precision of +-1, can it detect...

If an instrument has precision of +-1, can it detect a value of 1.3?

Initial value problems, Write a Matlab function MyIVP that solves an initia...

Write a Matlab function MyIVP that solves an initial-value problem (IVP) for a system of ordinary differential equations (ODEs) of the form x ?(t) = f (t, x(t)), where f : R × Rn ?

1, how do you find the perimeter of an equalateral triangle

how do you find the perimeter of an equalateral triangle

Inventory record, a) Complete the inventory record below for an FOQ of 100 ...

a) Complete the inventory record below for an FOQ of 100 units. b) Talk about weaknesses of MRP. List at least 3 and describe each in a sentence or two. Item: A

Properties of t distribution, Properties of t distribution 1. The t di...

Properties of t distribution 1. The t distribution ranges from - ∞ to ∞ first as does the general distribution 2. The t distribution as the standard general distribution is

Operation research, difference between scope and application of operation r...

difference between scope and application of operation research

One-to-one function, One-to-one function: A function is called one-to-one ...

One-to-one function: A function is called one-to-one if not any two values of x produce the same y.  Mathematically specking, this is the same as saying,  f ( x 1 ) ≠ f ( x 2

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd