Obligatory application and interpretation problem, Mathematics

Assignment Help:

Obligatory application/interpretation problem : Next, we need to do our obligatory application/interpretation problem so we don't forget about them.

Example: Assume that the position of an object is given by  s (t ) = tet

Does the object stop moving ever?

Solution : First we will require the derivative. We require this to find out if the object ever stops moving as at that point (provided there is one) the velocity is going to zero and recall that the derivative of the position functions is the velocity of the object.

The derivative is,                            s′ (t ) = et  + tet  = (1 + t ) et

Hence, we have to determine if the derivative is ever zero. To do this we will have to solve,

                                                                    (1 + t ) et  = 0

Now, we already know that exponential functions are never zero and hence this will only be zero at t = -1 . Thus, if we will allow negative values of t then the object will stop moving once at t = -1 .

If we aren't going to let negative values of t then the object will never stop moving.

We should look at couple of derivatives to make sure that we don't confuse the two. The two derivatives are,

d ( xn )/dx = nx n -1                           Power Rule

d (a x )/ dx = a x ln a                          Derivative of an exponential function

This is important to note that with the Power rule the exponent should be a constant and the base should be a variable whereas we require exactly the opposite for the derivative of an exponential function.  For exponential function the exponent should be a variable and the base should be a constant.


Related Discussions:- Obligatory application and interpretation problem

Determine the volume of the pool, An inground pool is pooring with water. T...

An inground pool is pooring with water. The shallow end is 3 ft deep and gradually slopes to the deepest end, which is 10 ft deep. The width of the pool is 30 ft and the length is

What is the area covered through the motion of the fan, The arm of a ceilin...

The arm of a ceiling fan measures a length of 25 in. What is the area covered through the motion of the fan blades while turned on? (π = 3.14) The ceiling fan follows a circula

Fundamental theorem of calculus, Fundamental Theorem of Calculus, Part II ...

Fundamental Theorem of Calculus, Part II Assume f ( x ) is a continuous function on [a,b] and also assume that F ( x ) is any anti- derivative for f ( x ) . Then,

Utilizes the denominator for our substitution, Evaluate given integrals. ...

Evaluate given integrals.                ∫3/(5 y + 4)   dy Solution Let's notice as well that if we take the denominator & differentiate it we get only a constant and th

Tangent, Tangent, Normal and Binormal Vectors In this part we want to ...

Tangent, Normal and Binormal Vectors In this part we want to look at an application of derivatives for vector functions.  In fact, there are a couple of applications, but they

Example of factor by grouping, Factor by grouping each of the following. ...

Factor by grouping each of the following. 3x 2 - 2x + 12x - 8 Solution           3x 2 - 2x + 12x - 8 In this case we collect the first two terms & the final two te

Factoring, how are polynomials be factored/?

how are polynomials be factored/?

Compute the volume and surface area of a right circular cone, Compute the v...

Compute the volume and surface area of a right circular cone: Compute the volume and surface area of a right circular cone along with r =  3", h = 4", and l = 5".  Be sure to

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd