Obligatory application and interpretation problem, Mathematics

Assignment Help:

Obligatory application/interpretation problem : Next, we need to do our obligatory application/interpretation problem so we don't forget about them.

Example: Assume that the position of an object is given by  s (t ) = tet

Does the object stop moving ever?

Solution : First we will require the derivative. We require this to find out if the object ever stops moving as at that point (provided there is one) the velocity is going to zero and recall that the derivative of the position functions is the velocity of the object.

The derivative is,                            s′ (t ) = et  + tet  = (1 + t ) et

Hence, we have to determine if the derivative is ever zero. To do this we will have to solve,

                                                                    (1 + t ) et  = 0

Now, we already know that exponential functions are never zero and hence this will only be zero at t = -1 . Thus, if we will allow negative values of t then the object will stop moving once at t = -1 .

If we aren't going to let negative values of t then the object will never stop moving.

We should look at couple of derivatives to make sure that we don't confuse the two. The two derivatives are,

d ( xn )/dx = nx n -1                           Power Rule

d (a x )/ dx = a x ln a                          Derivative of an exponential function

This is important to note that with the Power rule the exponent should be a constant and the base should be a variable whereas we require exactly the opposite for the derivative of an exponential function.  For exponential function the exponent should be a variable and the base should be a constant.


Related Discussions:- Obligatory application and interpretation problem

Jordan needs help, carlie is now fivetimes as old as henry. in nine years ...

carlie is now fivetimes as old as henry. in nine years her age will be twice henry''s age then. how old is carly now

Inverse functions, We have seen that if y is a function of x, then fo...

We have seen that if y is a function of x, then for each given value of x, we can determine uniquely the value of y as per the functional relationship. For some f

Understand the terms quotient and remainder, What other activities can you ...

What other activities can you suggest to help a child understand the terms 'quotient' and 'remainder'? Once children understand the concept and process of division, with enough

Impact did this have on spanish approach their subjugation, Compare and con...

Compare and contrast the Conquest of Mexico and the Conquest of Peru in the 16 th century. How did the structures of the indigenous empires in these two regions differ? What impact

Mathematics is all around us-mathematics- in our lives, Mathematics Is All ...

Mathematics Is All Around Us :  What is the first thing you do when you get up? Make yourself a nice cup of tea or coffee? If so, then you're using mathematics! Do you agree? Cons

Run a chi-square test, Download the data on Gas Mileage.  This is a sample ...

Download the data on Gas Mileage.  This is a sample of 81 passenger cars with information about gas consumption and other technical details.     a.        Estimate the following

Brahmaguptas problem, How to solve Brahmaguptas Problem? Explain Brahmagupt...

How to solve Brahmaguptas Problem? Explain Brahmaguptas Problem solving method?

Determine the length of the diagonal, A box is 30 cm long, 8 cm wide and 12...

A box is 30 cm long, 8 cm wide and 12 cm high. Determine the length of the diagonal AB ? Round to the nearest tenth. a. 34.5 cm b. 32.1 cm c. 35.2 cm d. 33.3 cm

How to subtract fractions with the same denominators, Q. How to Subtract fr...

Q. How to Subtract fractions with the same denominators? Ans. Subtracting fractions is basically the same as adding them. If you don't know how to add fractions, you shoul

Parametric curve - parametric equations & polar coordinates, Parametric Cur...

Parametric Curve - Parametric Equations & Polar Coordinates Here now, let us take a look at just how we could probably get two tangents lines at a point.  This was surely not

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd