Number types in pl/sql, PL-SQL Programming

Assignment Help:

Number Types

The Number types permit you to store the numeric data (real numbers, integers, and floating-point numbers), show quantities, and do computations.

BINARY_INTEGER

You use the BINARY_INTEGER datatype to store the signed integers. Its magnitude ranges from -2147483647 to 2147483647. Like PLS_INTEGER values, BINARY_INTEGER values need less storage than NUMBER values. Though, most BINARY_INTEGER operations are slower than the PLS_INTEGER operations.

BINARY_INTEGER Subtypes

A base type is the datatype from which a subtype is derived. A subtype links a base type with a constraint and so defines a subset of the values. For your convenience, the PL/SQL predefines the following BINARY_INTEGER subtypes as shown below:

NATURAL

NATURALN

POSITIVE

POSITIVEN

SIGNTYPE

The subtypes NATURAL & POSITIVE restrict an integer variable to non-negative or positive values, respectively. The NATURALN and POSITIVEN prevent the assigning of nulls to an integer variable. The SIGNTYPE restrict an integer variable to the values -1, 0, and 1, which is useful in the programming tri-state logic.

NUMBER

You use the NUMBER datatype to store a fixed-point or floating-point numbers of virtually any sizes. Its magnitude range is 1E-130 to 10E125. If the value of an expression falls exterior to this range, you get a numeric overflow or underflow error. You can specify the precision that is the total number of digits, and the scale, which is the number of digits to the right of the decimal point. The syntax is as shown below:

NUMBER[(precision,scale)]

To declare a fixed-point numbers, for which you must specify the scale, use the form as shown:

NUMBER(precision,scale)

To declare a floating-point numbers, for which you cannot identify the precision or scale as the decimal point can "float" to any position, use the form as shown:

NUMBER

To declare the integers, that have no decimal point, use the form sown below:

NUMBER(precision) -- same as NUMBER(precision,0)

You cannot use the constants or variables to specify the precision and scale; you should use the integer literals. The highest precision of a NUMBER value is 38 decimal digits. If you do not specify the precision, it default to 38 or the highest supported by your system, either is less.

NUMBER Subtypes

You can use the NUMBER subtypes for compatibility with ANSI/ISO and IBM types or when you want a more expressive name:

DEC

DECIMAL

DOUBLE PRECISION

FLOAT

INTEGER

INT

NUMERIC

REAL

SMALLINT

Use the subtypes DEC, DECIMAL, & NUMERIC to declare the fixed-point numbers with a greatest precision of 38 decimal digits.

Use the subtypes DOUBLE PRECISION & FLOAT to declare the floating-point numbers with a greatest precision of 126 binary digits, which is roughly equal to 38 decimal digits. Or, use the subtype REAL to declare a floating-point numbers with a greatest precision of 63 binary digits, which is roughly equal to 18 decimal digits.

Use the subtypes INTEGER, INT, & SMALLINT to declare integers with a greatest precision of 38 decimal digits.

PLS_INTEGER

You use the PLS_INTEGER datatype to store the signed integers. Its magnitude ranges from

2147483647 to 2147483647. The PLS_INTEGER values need less storage than NUMBER values. The PLS_INTEGER operations also use the machine arithmetic; therefore they are faster than NUMBER & BINARY_INTEGER operations that use library arithmetic. For superior performance, use PLS_INTEGER for all computations that fall within its magnitude range.

Though PLS_INTEGER and BINARY_INTEGER have the same magnitude range, they are not fully compatible. If a PLS_INTEGER computations overflows, an exception is raised. However, if  a BINARY_INTEGER calculation overflows, no exception is raised if the result is assigned to a NUMBER variable.Number Types

The Number types permit you to store the numeric data (real numbers, integers, and floating-point numbers), show quantities, and do computations.

BINARY_INTEGER

You use the BINARY_INTEGER datatype to store the signed integers. Its magnitude ranges from -2147483647 to 2147483647. Like PLS_INTEGER values, BINARY_INTEGER values need less storage than NUMBER values. Though, most BINARY_INTEGER operations are slower than the PLS_INTEGER operations.

BINARY_INTEGER Subtypes

A base type is the datatype from which a subtype is derived. A subtype links a base type with a constraint and so defines a subset of the values. For your convenience, the PL/SQL predefines the following BINARY_INTEGER subtypes as shown below:

NATURAL

NATURALN

POSITIVE

POSITIVEN

SIGNTYPE

The subtypes NATURAL & POSITIVE restrict an integer variable to non-negative or positive values, respectively. The NATURALN and POSITIVEN prevent the assigning of nulls to an integer variable. The SIGNTYPE restrict an integer variable to the values -1, 0, and 1, which is useful in the programming tri-state logic.

NUMBER

You use the NUMBER datatype to store a fixed-point or floating-point numbers of virtually any sizes. Its magnitude range is 1E-130 to 10E125. If the value of an expression falls exterior to this range, you get a numeric overflow or underflow error. You can specify the precision that is the total number of digits, and the scale, which is the number of digits to the right of the decimal point. The syntax is as shown below:

NUMBER[(precision,scale)]

To declare a fixed-point numbers, for which you must specify the scale, use the form as shown:

NUMBER(precision,scale)

To declare a floating-point numbers, for which you cannot identify the precision or scale as the decimal point can "float" to any position, use the form as shown:

NUMBER

To declare the integers, that have no decimal point, use the form sown below:

NUMBER(precision) -- same as NUMBER(precision,0)

You cannot use the constants or variables to specify the precision and scale; you should use the integer literals. The highest precision of a NUMBER value is 38 decimal digits. If you do not specify the precision, it default to 38 or the highest supported by your system, either is less.

NUMBER Subtypes

You can use the NUMBER subtypes for compatibility with ANSI/ISO and IBM types or when you want a more expressive name:

DEC

DECIMAL

DOUBLE PRECISION

FLOAT

INTEGER

INT

NUMERIC

REAL

SMALLINT

Use the subtypes DEC, DECIMAL, & NUMERIC to declare the fixed-point numbers with a greatest precision of 38 decimal digits.

Use the subtypes DOUBLE PRECISION & FLOAT to declare the floating-point numbers with a greatest precision of 126 binary digits, which is roughly equal to 38 decimal digits. Or, use the subtype REAL to declare a floating-point numbers with a greatest precision of 63 binary digits, which is roughly equal to 18 decimal digits.

Use the subtypes INTEGER, INT, & SMALLINT to declare integers with a greatest precision of 38 decimal digits.

PLS_INTEGER

You use the PLS_INTEGER datatype to store the signed integers. Its magnitude ranges from

2147483647 to 2147483647. The PLS_INTEGER values need less storage than NUMBER values. The PLS_INTEGER operations also use the machine arithmetic; therefore they are faster than NUMBER & BINARY_INTEGER operations that use library arithmetic. For superior performance, use PLS_INTEGER for all computations that fall within its magnitude range.

Though PLS_INTEGER and BINARY_INTEGER have the same magnitude range, they are not fully compatible. If a PLS_INTEGER computations overflows, an exception is raised. However, if  a BINARY_INTEGER calculation overflows, no exception is raised if the result is assigned to a NUMBER variable.


Related Discussions:- Number types in pl/sql

Query, ALTER TABLE bb_basketitem ADD CONSTRAINT bitems_qty_ck CHECK (quan...

ALTER TABLE bb_basketitem ADD CONSTRAINT bitems_qty_ck CHECK (quantity BEGIN INSERT INTO bb_basketitem VALUES (88,8,10.8,21,16,2,3); END; Brewbean’s wants to add a check

Write a pl/sql anonymous block that accepts an employee id, Based on the EM...

Based on the EMPLOYEE table created in Assignment #1, write a PL/SQL anonymous block that accepts an employee ID from the user input and finds whether the employee ID is in the EMP

Declaring and initializing objects in pl/sql, Declaring and Initializing Ob...

Declaring and Initializing Objects: An object type is once defined and installed in the schema; you can use it to declare the objects in any PL/SQL, subprogram, block or packa

Use the returning clause -improve performance of application, Use the RETUR...

Use the RETURNING Clause Frequently, the application requires information about the row affected by a SQL operation, for illustration, to produce a report or take a subsequent

Types of evolution, TYPES OF EVOLUTION - Sequential evolution         ...

TYPES OF EVOLUTION - Sequential evolution                  :                    Minor changes in the gene pool of a population from one generation to the next, with the resul

Overview of control structures-comparison operators, Overview of control st...

Overview of control structures According to the structure theorem, any computer program can be written by using the basic control structures as shown in figure below. They can b

Update statement - syntax, UPDATE Statement   The UPDATE statement tra...

UPDATE Statement   The UPDATE statement transforms the values of the specified columns in one or more rows in the table or view. Syntax:

Inner join, Inner Join We have learned how to retrieve data from one t...

Inner Join We have learned how to retrieve data from one table by using SELECT statement. But, as we have learned, normalized relational databases mean the data is spread betw

Advantages of invoker rights, Advantages of Invoker Rights The Invoker-...

Advantages of Invoker Rights The Invoker-rights routines centralize the data retrieval. They are particularly helpful in applications which store data in various schemas. In su

Relational algebra - sql, Relational Algebra - SQL It describes some ...

Relational Algebra - SQL It describes some operators, that together constitute an algebra that is not only relationally complete but also irreducibly so (very nearly- apart f

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd