Normal distribution, Advanced Statistics

Assignment Help:

Your first task is to realize two additional data generation functions. Firstly, extend the system to generate random integral numbers based on normal distribution. You need to study Data Generator's structure and extend number generation type to activate normal distribution. The interface needs to obtain both mean and sigma as shown in Figure 1. Consider the code found here which is reproduced below for your convenience:
function gauss() {
// N(0,1)
// returns random number with normal distribution:
// mean=0
// std dev=1

// auxiliary vars
$x=random_0_1();
$y=random_0_1();
// two independent variables with normal distribution N(0,1)
$u=sqrt(-2*log($x))*cos(2*pi()*$y);
$v=sqrt(-2*log($x))*sin(2*pi()*$y);
// i will return only one, couse only one needed
return $u;
}
function gauss_ms($m=0.0,$s=1.0) {
// N(m,s)
// returns random number with normal distribution:
// mean=m
// std dev=s
return gauss()*$s+$m;
}
function random_0_1() {
// auxiliary function
// returns random number with flat distribution from 0 to 1
return (float)rand()/(float)getrandmax();
}
Notice that the return value of the above code is a floating value. You can round it to nearest integer by adding a "rounding option" to the interface.

773_normal distribution.png

Figure: Functions added to Data Generator

Next, realize one form of skewed distribution that approximates Pareto Principle. Consider a skewed access pattern often evidenced in data applications such that s percent of accesses would go to (100 - s) percent of data items. For instance, a typical "80-20 rule" for 1000 accesses over 500 data items means that about 800 accesses (80% of accesses) go to a specific set of about 100 items (20% of data items). In our case, data generation should be based on independent repeated trials, not as all trials once in a batch. Therefore, implementing strict Pareto Principle is difficult. Instead, we can approximate access pattern generation by the following method:

• skew generation function receives a range r and a skew factor s as parameter, both of which are integers and r must be larger 1 while s must be between 50 and 100.

• data elements are considered to have unique IDs in the range [1, r], in which elements are listed in an increasing order of IDs such as 1, 2, 3, ..., r.

• skew generation function produces an integer value between 1 and r representing a data access in the following manner:

1. skewed access will go to the top portion of the elements, that is, those between 1 and t = r × (100 - s) / 100.

2. draw a random number p from uniform distribution between 0 and 99.

3. if p falls in less than s, i.e., [0, s - 1], the top portion of elements [1, t] is accessed.

4. otherwise the access goes to [t + 1, r].

Above illustration should be sufficient to provide you with the concrete requirement for the two frequently utilized data generation. Figure 1 and 2 shows interface and sample output respectively. In these figures, rounding to integer is applied automatically. A checkbox should be added to the interface so that users can choose whether values generated are rounded or not. Notice that this development is not from scratch, but is "reverse engineering" of already developed product. Addition of the above functions to Data Generator is easily done. You should look into the contents of docs/data_types.php.

2439_normal distribution1.png

Figure: Generated data example


Related Discussions:- Normal distribution

Hypothesis testing and chi-square tests.., The results of a survey determin...

The results of a survey determined whether the age of a driver 21 years and older has any effect on the number of motor vehicle accidents in which he/she is involved. Question 1:

Double-dummy technique, It is the technique used in the clinical trials whe...

It is the technique used in the clinical trials when it is possible to make an acceptable place before an active treatment but not to make the two active treatments identical. In t

Negative binomial distribution, Negative binomial distribution is the prob...

Negative binomial distribution is the probability distribution of number of failures, X, before the kth success in the sequence of Bernoulli trials where the probability of succes

Expected-utility maximizer, There are two periods. You observe that Jack co...

There are two periods. You observe that Jack consumes 100 apples in period t = 0, and 120 apples in period t = 1. That is, (c 0 ; c 1 ) = (100; 120) Suppose Jack has the util

Historigram, difference between histogram and historigram

difference between histogram and historigram

Imprecise probabilities, Imprecise probabilities is a n approach used by s...

Imprecise probabilities is a n approach used by soft techniques in which uncertainty is represented by the closed, convex sets of probability distributions and the probability of

Assignment, i need help for my assignment and the deadline is Friday

i need help for my assignment and the deadline is Friday

Buffon''s needle problem, Buffon's needle problem : A problem proposed and ...

Buffon's needle problem : A problem proposed and solved by the scientist Comte de Buffon in 1777 which includes determining the probability, p, which a needle of length l will inte

Hanging rootogram, Hanging rootogram is   he diagram comparing the observe...

Hanging rootogram is   he diagram comparing the observed rootogram with the ?tted curve, in which dissimilarities between the two are displayed in relation to the horizontal axis,

Doubly ordered contingency tables, The contingency tables in which the row ...

The contingency tables in which the row and column both the categories follow a natural order. An instance for this might be, drug toxicity ranging from mild to severe, against the

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd