Normal distribution, Advanced Statistics

Assignment Help:

Your first task is to realize two additional data generation functions. Firstly, extend the system to generate random integral numbers based on normal distribution. You need to study Data Generator's structure and extend number generation type to activate normal distribution. The interface needs to obtain both mean and sigma as shown in Figure 1. Consider the code found here which is reproduced below for your convenience:
function gauss() {
// N(0,1)
// returns random number with normal distribution:
// mean=0
// std dev=1

// auxiliary vars
$x=random_0_1();
$y=random_0_1();
// two independent variables with normal distribution N(0,1)
$u=sqrt(-2*log($x))*cos(2*pi()*$y);
$v=sqrt(-2*log($x))*sin(2*pi()*$y);
// i will return only one, couse only one needed
return $u;
}
function gauss_ms($m=0.0,$s=1.0) {
// N(m,s)
// returns random number with normal distribution:
// mean=m
// std dev=s
return gauss()*$s+$m;
}
function random_0_1() {
// auxiliary function
// returns random number with flat distribution from 0 to 1
return (float)rand()/(float)getrandmax();
}
Notice that the return value of the above code is a floating value. You can round it to nearest integer by adding a "rounding option" to the interface.

773_normal distribution.png

Figure: Functions added to Data Generator

Next, realize one form of skewed distribution that approximates Pareto Principle. Consider a skewed access pattern often evidenced in data applications such that s percent of accesses would go to (100 - s) percent of data items. For instance, a typical "80-20 rule" for 1000 accesses over 500 data items means that about 800 accesses (80% of accesses) go to a specific set of about 100 items (20% of data items). In our case, data generation should be based on independent repeated trials, not as all trials once in a batch. Therefore, implementing strict Pareto Principle is difficult. Instead, we can approximate access pattern generation by the following method:

• skew generation function receives a range r and a skew factor s as parameter, both of which are integers and r must be larger 1 while s must be between 50 and 100.

• data elements are considered to have unique IDs in the range [1, r], in which elements are listed in an increasing order of IDs such as 1, 2, 3, ..., r.

• skew generation function produces an integer value between 1 and r representing a data access in the following manner:

1. skewed access will go to the top portion of the elements, that is, those between 1 and t = r × (100 - s) / 100.

2. draw a random number p from uniform distribution between 0 and 99.

3. if p falls in less than s, i.e., [0, s - 1], the top portion of elements [1, t] is accessed.

4. otherwise the access goes to [t + 1, r].

Above illustration should be sufficient to provide you with the concrete requirement for the two frequently utilized data generation. Figure 1 and 2 shows interface and sample output respectively. In these figures, rounding to integer is applied automatically. A checkbox should be added to the interface so that users can choose whether values generated are rounded or not. Notice that this development is not from scratch, but is "reverse engineering" of already developed product. Addition of the above functions to Data Generator is easily done. You should look into the contents of docs/data_types.php.

2439_normal distribution1.png

Figure: Generated data example


Related Discussions:- Normal distribution

Blinder oaxaca method, Blinder Oaxaca method: A method or technique used f...

Blinder Oaxaca method: A method or technique used for assessing the effect of the role of income on racial wealth gap. The method or technique is based on the decomposition of the

Disease clusters, An unusual aggregation of the health events, real or perc...

An unusual aggregation of the health events, real or perceived. The events might be grouped in the particular region or in some short period of time, or they might happen among the

Chebyshev''s inequality, Chebyshev's inequality: A statement about the pro...

Chebyshev's inequality: A statement about the proportion of the observations which fall within some number of the standard deviations of the mean for any of the probability distri

Genomics, Genomics  is the study of the structure, function and the evoluti...

Genomics  is the study of the structure, function and the evolution of deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) sequences which comprise the genome of living organisms

Window variables, Window variables are the variables measured during the c...

Window variables are the variables measured during the constrained interval of an observation period which is accepted as the proxies for the information over the whole period. Fo

Historigram, difference between histogram and historigram

difference between histogram and historigram

Best subsets regression, In the time series plot and scatter graphs there w...

In the time series plot and scatter graphs there were many outliers that were clearly visible. These have been removed to identify if they were influential or had high leverage and

Regression, calculate the mean yearly value using the average unemployment ...

calculate the mean yearly value using the average unemployment rate by month

Mean-range plot, Mean-range plot   is the graphical tool or device usefu...

Mean-range plot   is the graphical tool or device useful in selecting a transformation in the time series analysis. The range is plotted against the mean for each of the seasona

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd