Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Normal Distribution
Figure 1
The normal distribution reflects the various values taken by many real life variables like the heights and weights of people or the marks of students in a large class. In all these cases a large number of observations are found to be clustered around the mean value m and their frequency drops sharply as we move away from the mean in either direction. For example, if the mean height of an adult in a city is 6 feet then a large number of adults will have heights around 6 feet. Relatively a few adults will have heights of 5 feet or 7 feet.
Further, if we draw samples of size n (where n is a fixed number over 30) from any population, then the sample mean will be (approximately) normally distributed with a mean equal to m i.e. the mean of the population.
The characteristics of normal probability distribution with reference to the above figure are
The curve has a single peak; thus it is unimodal.
The mean of a normally distributed population lies at the center of its normal curve.
Because of the symmetry of the normal probability distribution, the median and the mode of the distribution are also at the center.
The two tails of the normal probability distribution extend indefinitely and never touch the horizontal axis.
If s is the standard deviation of the normal distribution, 80% of the observation will be in the interval m -1.28s to m + 1.28s.
Figure 2
95% of the observations will be in the interval m - 1.96s to m + 1.96s.
Figure 3
98% of the observations will lie in the interval m - 2.33 s to m + 2.33 s. Figure 4
98% of the observations will lie in the interval m - 2.33 s to m + 2.33 s.
Figure 4
The Standard Normal Distribution is a normal distribution with a mean m = 0 and a standard deviation s = 1. The observation values in a standard normal distribution are denoted by the letter Z.
Evaluate the following integral. ∫√(x 2 +4x+5) dx Solution: Remind from the Trig Substitution section that to do a trig substitution here we first required to complete t
Mod(Z-25i) Sol) mod (Z-25i) means Z lies in the circumference of the circle with (0,25) at its centre and radius less then 15. so difference in the max and min value of arg Z is
Submit your working in (neat) handwritten form (do not type up your solutions). For the plots that you generate in Maple or Matlab, you can print them out and attach them at the en
Next we have to talk about evaluating functions. Evaluating a function is in fact nothing more than asking what its value is for particular values of x. Another way of looking at
Solving an equation using Multiplication and Division A variable is a symbol that represents a number. Usually we use the letters like n , t , or x for variables. For
The centre of a circle is (2x - 1, 3x + 1).Find x if the circle passes through (-3,-1) and the length of the diameter is 20 units.
Are the two angles of a rectangles congruent ? why ?
Solve the inequation: |x|
Q. Illustrate Exponential Distribution? Ans. These are two examples of events that have an exponential distribution: The length of time you wait at a bus stop for the n
Determine if the following sequences converge or diverge. If the sequence converges find out its limit. a. {3n 2 - 1 / 10n + 5n 2 } ∞ n =2 b. {e 2n / n} ∞ n =1 c
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd