Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Theory of Noncomputability, Define Noncomputability
When we want to specify the elements of a set that contains only a few elements, the most direct and obvious way is to exhaustively list all the elements in the set. However, when a set contains a large number of an infinite number of elements, exhaustively listing all elements in the set becomes impractical or impossible. For example, we may haveP = {x|x is a high school student in Illinios}Where P is a finite set with a large number of elements. We may have,Q = {x|x is a perfect square}Where Q is a countably infinite set of integers. Also, we may have,R = {x| {a, b} ⊆ x}Note that R is a set of sets such that every element in R has the set {a, b} as a subset.We want to show that there is a possible pitfall when we specify the elements of a set by specifying the properties that uniquely characterize these elements.Consider the setS = {x|x ∉ x}It seems that we have followed the "recipe" and have defined a set S such that a set x is an element of S ifx ∉ x. Thus for example, {a, b} is an element of S because {a, b} ∉ {a, b}. {{a}} is also an element of S because {{a}} ∉ {{a}}. However, suppose someone wants to know whether S is an element of S. In other words, she wants to know whether S ? S. Following the specification, we say that for S to be an element of S it must be the case that S ∉ S, which is a self contradictory statement. Let us turn around and assume that S is not an element of S; that is S ∉ S. Then, according to the specification, S should be an element of S. That is, if S ∉ S then S ? S- again, a self-contradictory statement. We hasten to point out that what we have said is not just a pun and have by no means attempted to confuse the reader with entangled and complicated syntax. Rather, contrary to our intuition, it is not always the case that we can precisely specify the elements of a set by specifying the properties of the elements in the set. Such an observation was first made by B. Russell in 1911, and is referred to as Russell's appendix.
factors influecing product mix
"The service industry is customer driven, and marketing thus focuses on the needs of the customer and involves finding out what the customer wants and expect first, before any atte
Question: (a) What is market segmentation? (b) "It is often said that each consumer is unique, with unique needs." How useful is then, market segmentation as a marketing t
(x+2)^2
You are the Marketing Manager of a supermarket chain of ABC. The sales have gone down for several months. When you looked into the matter, you have found out some reasons, among th
Q. Evaluation of Advertising Media - Newspaper? Newspaper: - Newspaper is brought mainly for their news values. Newspapers are published in a variety of languages. In country l
A rectangular solid block of ice is melting such that the height is always twice the edge of the square base. Find the expression for the instantaneous rate of change of surface ar
What is Line Filling in Product Line? Line Filling: A product line can also be length though adding more items into present product range there are a few reasons for li
what is the sales information systems
Q. Difficult to Evaluate percentage response? For estimate effectiveness some response is desired from the customers. However because total numbers of readers/ viewers of media
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd