Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Theory of Noncomputability, Define Noncomputability
When we want to specify the elements of a set that contains only a few elements, the most direct and obvious way is to exhaustively list all the elements in the set. However, when a set contains a large number of an infinite number of elements, exhaustively listing all elements in the set becomes impractical or impossible. For example, we may haveP = {x|x is a high school student in Illinios}Where P is a finite set with a large number of elements. We may have,Q = {x|x is a perfect square}Where Q is a countably infinite set of integers. Also, we may have,R = {x| {a, b} ⊆ x}Note that R is a set of sets such that every element in R has the set {a, b} as a subset.We want to show that there is a possible pitfall when we specify the elements of a set by specifying the properties that uniquely characterize these elements.Consider the setS = {x|x ∉ x}It seems that we have followed the "recipe" and have defined a set S such that a set x is an element of S ifx ∉ x. Thus for example, {a, b} is an element of S because {a, b} ∉ {a, b}. {{a}} is also an element of S because {{a}} ∉ {{a}}. However, suppose someone wants to know whether S is an element of S. In other words, she wants to know whether S ? S. Following the specification, we say that for S to be an element of S it must be the case that S ∉ S, which is a self contradictory statement. Let us turn around and assume that S is not an element of S; that is S ∉ S. Then, according to the specification, S should be an element of S. That is, if S ∉ S then S ? S- again, a self-contradictory statement. We hasten to point out that what we have said is not just a pun and have by no means attempted to confuse the reader with entangled and complicated syntax. Rather, contrary to our intuition, it is not always the case that we can precisely specify the elements of a set by specifying the properties of the elements in the set. Such an observation was first made by B. Russell in 1911, and is referred to as Russell's appendix.
Explain about the marketing effectiveness in strategic controlling.
consumer mind in a block box
What are the several advantages of Business to Business? Some of the advantages of Business to Business are: a. Enhanced customer satisfaction b. Enhanced inventory syste
what are the core marketing concepts?
with reference to the purchase of a new television set explain the buying decision process which a typical consumer goes through demonstrate how company can formulate their marketi
What are the various approaches for selecting target markets? Once a firm understand its markets and the suitable bases for segmenting such markets, this should choose an appro
Task of management team responsible for marketing communications Main task facing the management team responsible for marketing communications is to decide following: 1. w
What is Brand Extension? Explain briefly. Brand Extension: A successful brand is such as a powerhouse containing adequate energy to illuminate distant territories which a
suggest how cultural values, beliefs and behaviour affect m,the marketing mix of a large bookstore chain
Explain about the Company’s Macroenvironment in brief. The Company’s Macroenvironment: The larger societal forces influence the entire microenvironment demographic, natura
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd