Non-regular languages, Theory of Computation

Assignment Help:

Suppose A = (Q,Σ, T, q0, F) is a DFA and that Q = {q0, q1, . . . , qn-1} includes n states. Thinking of the automaton in terms of its transition graph, a string x is recognized by the automaton iff there is a path through the graph from q0 to some qf ∈ F that is labeled x, i.e., if δ(q0, x) ∈ F. Suppose x ∈ L(A) and |x| = l. Then there is a path l edges long from q0 to qf . Since the path traverses l edges, it must visit l + 1 states.

756_Non-Regular Languages.png

Suppose, now, that l ≥ n. Then the path must visit at least n+1 states. But there are only n states in Q; thus, the path must visit at least one state at least twice. (This is an application of the pigeon hole principle: If one places k objects into n bins, where k > n, then at least one bin must contain at least two objects.)

1213_Non-Regular Languages1.png

Thus, whenever |x| ≥ n the path labeled w will have a cycle. We can break the path into three segments: x = uvw, where

• there is a path (perhaps empty) from q0 to p labeled u (i.e., δ(q0, u) = p),

• there is a (non-empty) path from p to p (a cycle) labeled v (i.e., δ(p, v) = p),

• there is a path (again, possibly empty) from p to qf labeled w (i.e., δ(p,w) = qf ).

But if there is a path from q0 to p labeled u and one from p to qf labeled w then there is a path from q0 to qf labeled uw in which we do not take the loop labeled v, which is to say uw ∈ L(A). Formally

δ(q0, uvvw) = δ(δ(q0, u), w) =  δ(p, w) = qf =  F

Similarly, we can take the v loop more than once:

δ(q0, uvvw) = δ(δ(δ(δ(q0, u), v), v),w)
= δ(δ(δ(p, v), v),w)

= δ(δ(p, v),w)

= δ(p,w) = qf ∈ F.

In fact, we can take it as many times as we like. Thus, uvi

w ∈ L(A) for all i.

This implies, then, that if the language recognized by a DFA with n states includes a string of length at least n then it contains in?nitely many closely related strings as well. We can strengthen this by noting (as a consequence of the pigeon hole principle again) that the length of the path from q0 to the ?rst time a state repeats (i.e., the second occurrence of p) must be no greater than n. Thus |uv| ≤ n.


Related Discussions:- Non-regular languages

Transition graph for the automaton, Lemma 1 A string w ∈ Σ* is accepted by ...

Lemma 1 A string w ∈ Σ* is accepted by an LTk automaton iff w is the concatenation of the symbols labeling the edges of a path through the LTk transition graph of A from h?, ∅i to

Construct a regular expression, Given any NFA A, we will construct a regula...

Given any NFA A, we will construct a regular expression denoting L(A) by means of an expression graph, a generalization of NFA transition graphs in which the edges are labeled with

Design and implementation of the state machine, You are required to design ...

You are required to design a system that controls the speed of a fan's rotation. The speed at which the fan rotates is determined by the ambient temperature, i.e. as the temperatur

Trees and graphs , Trees and Graphs Overview: The problems for this ...

Trees and Graphs Overview: The problems for this assignment should be written up in a Mircosoft Word document. A scanned hand written file for the diagrams is also fine. Be

Generalization of the interpretation of local automata, The generalization ...

The generalization of the interpretation of strictly local automata as generators is similar, in some respects, to the generalization of Myhill graphs. Again, the set of possible s

Local suffix substitution closure, The k-local Myhill graphs provide an eas...

The k-local Myhill graphs provide an easy means to generalize the suffix substitution closure property for the strictly k-local languages. Lemma (k-Local Suffix Substitution Clo

Automata, automata of atm machine

automata of atm machine

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd