Non-regular languages, Theory of Computation

Assignment Help:

Suppose A = (Q,Σ, T, q0, F) is a DFA and that Q = {q0, q1, . . . , qn-1} includes n states. Thinking of the automaton in terms of its transition graph, a string x is recognized by the automaton iff there is a path through the graph from q0 to some qf ∈ F that is labeled x, i.e., if δ(q0, x) ∈ F. Suppose x ∈ L(A) and |x| = l. Then there is a path l edges long from q0 to qf . Since the path traverses l edges, it must visit l + 1 states.

756_Non-Regular Languages.png

Suppose, now, that l ≥ n. Then the path must visit at least n+1 states. But there are only n states in Q; thus, the path must visit at least one state at least twice. (This is an application of the pigeon hole principle: If one places k objects into n bins, where k > n, then at least one bin must contain at least two objects.)

1213_Non-Regular Languages1.png

Thus, whenever |x| ≥ n the path labeled w will have a cycle. We can break the path into three segments: x = uvw, where

• there is a path (perhaps empty) from q0 to p labeled u (i.e., δ(q0, u) = p),

• there is a (non-empty) path from p to p (a cycle) labeled v (i.e., δ(p, v) = p),

• there is a path (again, possibly empty) from p to qf labeled w (i.e., δ(p,w) = qf ).

But if there is a path from q0 to p labeled u and one from p to qf labeled w then there is a path from q0 to qf labeled uw in which we do not take the loop labeled v, which is to say uw ∈ L(A). Formally

δ(q0, uvvw) = δ(δ(q0, u), w) =  δ(p, w) = qf =  F

Similarly, we can take the v loop more than once:

δ(q0, uvvw) = δ(δ(δ(δ(q0, u), v), v),w)
= δ(δ(δ(p, v), v),w)

= δ(δ(p, v),w)

= δ(p,w) = qf ∈ F.

In fact, we can take it as many times as we like. Thus, uvi

w ∈ L(A) for all i.

This implies, then, that if the language recognized by a DFA with n states includes a string of length at least n then it contains in?nitely many closely related strings as well. We can strengthen this by noting (as a consequence of the pigeon hole principle again) that the length of the path from q0 to the ?rst time a state repeats (i.e., the second occurrence of p) must be no greater than n. Thus |uv| ≤ n.


Related Discussions:- Non-regular languages

Finite automata, design an automata for strings having exactly four 1''s

design an automata for strings having exactly four 1''s

Alphabets - strings and representation, A finite, nonempty ordered set will...

A finite, nonempty ordered set will be called an alphabet if its elements are symbols, or characters. A finite sequence of symbols from a given alphabet will be called a string ove

Chomsky normal form, s->0A0|1B1|BB A->C B->S|A C->S|null find useless symbo...

s->0A0|1B1|BB A->C B->S|A C->S|null find useless symbol?

Turing machine, design a turing machine that accepts the language which con...

design a turing machine that accepts the language which consists of even number of zero''s and even number of one''s?

Pushdown automator, draw pda for l={an,bm,an/m,n>=0} n is in superscript

draw pda for l={an,bm,an/m,n>=0} n is in superscript

Finite-state automaton, Paths leading to regions B, C and E are paths which...

Paths leading to regions B, C and E are paths which have not yet seen aa. Those leading to region B and E end in a, with those leading to E having seen ba and those leading to B no

Myhill-nerode, Theorem (Myhill-Nerode) A language L ⊆ Σ is recognizable iff...

Theorem (Myhill-Nerode) A language L ⊆ Σ is recognizable iff ≡L partitions Σ* into ?nitely many Nerode equivalence classes. Proof: For the "only if" direction (that every recogn

Suffix substitution closure, Our primary concern is to obtain a clear chara...

Our primary concern is to obtain a clear characterization of which languages are recognizable by strictly local automata and which aren't. The view of SL2 automata as generators le

D c o, Prove xy+yz+ýz=xy+z

Prove xy+yz+ýz=xy+z

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd