Non-regular languages, Theory of Computation

Assignment Help:

Suppose A = (Q,Σ, T, q0, F) is a DFA and that Q = {q0, q1, . . . , qn-1} includes n states. Thinking of the automaton in terms of its transition graph, a string x is recognized by the automaton iff there is a path through the graph from q0 to some qf ∈ F that is labeled x, i.e., if δ(q0, x) ∈ F. Suppose x ∈ L(A) and |x| = l. Then there is a path l edges long from q0 to qf . Since the path traverses l edges, it must visit l + 1 states.

756_Non-Regular Languages.png

Suppose, now, that l ≥ n. Then the path must visit at least n+1 states. But there are only n states in Q; thus, the path must visit at least one state at least twice. (This is an application of the pigeon hole principle: If one places k objects into n bins, where k > n, then at least one bin must contain at least two objects.)

1213_Non-Regular Languages1.png

Thus, whenever |x| ≥ n the path labeled w will have a cycle. We can break the path into three segments: x = uvw, where

• there is a path (perhaps empty) from q0 to p labeled u (i.e., δ(q0, u) = p),

• there is a (non-empty) path from p to p (a cycle) labeled v (i.e., δ(p, v) = p),

• there is a path (again, possibly empty) from p to qf labeled w (i.e., δ(p,w) = qf ).

But if there is a path from q0 to p labeled u and one from p to qf labeled w then there is a path from q0 to qf labeled uw in which we do not take the loop labeled v, which is to say uw ∈ L(A). Formally

δ(q0, uvvw) = δ(δ(q0, u), w) =  δ(p, w) = qf =  F

Similarly, we can take the v loop more than once:

δ(q0, uvvw) = δ(δ(δ(δ(q0, u), v), v),w)
= δ(δ(δ(p, v), v),w)

= δ(δ(p, v),w)

= δ(p,w) = qf ∈ F.

In fact, we can take it as many times as we like. Thus, uvi

w ∈ L(A) for all i.

This implies, then, that if the language recognized by a DFA with n states includes a string of length at least n then it contains in?nitely many closely related strings as well. We can strengthen this by noting (as a consequence of the pigeon hole principle again) that the length of the path from q0 to the ?rst time a state repeats (i.e., the second occurrence of p) must be no greater than n. Thus |uv| ≤ n.


Related Discussions:- Non-regular languages

DFA, designing DFA

designing DFA

Computer Simulation, Generate 100 random numbers with the exponential distr...

Generate 100 random numbers with the exponential distribution lambda=5.0.What is the probability that the largest of them is less than 1.0?

Chomsky-schutzenberger, The upper string r ∈ Q+ is the sequence of states v...

The upper string r ∈ Q+ is the sequence of states visited by the automaton as it scans the lower string w ∈ Σ*. We will refer to this string over Q as the run of A on w. The automa

Abstract model of computation, When we say "solved algorithmically" we are ...

When we say "solved algorithmically" we are not asking about a speci?c programming language, in fact one of the theorems in computability is that essentially all reasonable program

Ogdens lemma, proof ogdens lemma .with example i am not able to undestand ...

proof ogdens lemma .with example i am not able to undestand the meaning of distinguished position .

Transition graphs, We represented SLk automata as Myhill graphs, directed g...

We represented SLk automata as Myhill graphs, directed graphs in which the nodes were labeled with (k-1)-factors of alphabet symbols (along with a node labeled ‘?' and one labeled

How to solve the checking problem, The objective of the remainder of this a...

The objective of the remainder of this assignment is to get you thinking about the problem of recognizing strings given various restrictions to your model of computation. We will w

Path function of a nfa, The path function δ : Q × Σ* → P(Q) is the extensio...

The path function δ : Q × Σ* → P(Q) is the extension of δ to strings: This just says that the path labeled ε from any given state q goes only to q itself (or rather never l

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd