Myhill-nerode theorem, Theory of Computation

Assignment Help:

This close relationship between the SL2 languages and the recognizable languages lets us use some of what we know about SL2 to discover properties of the recognizable languages. Because they are SL2 languages, the runs of an automaton A (and, equivalently, the strings of pairs licensed by G2A) will satisfy the 2-suffix substitution closure property. This means that every recognizable language L is a homomorphic image of some language L′ (over an alphabet Σ′ , say) for which

                                                             u′1σ′v′1 ∈ L′ and u′2 σ′v′2 ∈ L′⇒ u′1σ′v′2( and u′2σ′v′1) ∈ L′.

Moreover, u′1σ′v′1 ∈ L′ and u′1σ′v′2 ∈ L′⇒ u′2σ′v′2 ∈ L′

The hypothetical u′1σ′ and u′2σ′ are indistinguishable by the language. Any continuation that extends one to a string in L′ will also extend the other to a string in L′ ; any continuation that extends one to a string not in L′ will extend the other to a string not in L′.

For the SL2 language L′ the strings that are indistinguishable in this way are marked by their ?nal symbol. Things are not as clear for the recognizable language L because the homomorphism may map many symbols of Σ′ to the same symbol of Σ. So it will not generally be the case that we can easily identify the sets of strings that are indistinguishable in this way. But they will, nevertheless, exist. There will be pairs of strings u1 and u2 - namely the homomorphic images of the pairs u′1σ′ and u′2σ′-for which any continuation v, it will be the case that u1v ∈ L iff u2v ∈ L.

This equivalence between strings (in the sense of being indistinguishable by the language in this way) is the key to characterizing the recognizable languages purely in terms of the strings they contain in a way analogous to the way suffix substitution closure characterizes the SL2.


Related Discussions:- Myhill-nerode theorem

Grammer, write grammer to produce all mathematical expressions in c.

write grammer to produce all mathematical expressions in c.

Instantaneous description - recognizable language, De?nition (Instantaneous...

De?nition (Instantaneous Description) (for both DFAs and NFAs) An instantaneous description of A = (Q,Σ, δ, q 0 , F) , either a DFA or an NFA, is a pair h q ,w i ∈ Q×Σ*, where

Gastric juice, what are composition and its function of gastric juice

what are composition and its function of gastric juice

CNF, S-->AAA|B A-->aA|B B-->epsilon

S-->AAA|B A-->aA|B B-->epsilon

Reducibility among problems, A common approach in solving problems is to tr...

A common approach in solving problems is to transform them to different problems, solve the new ones, and derive the solutions for the original problems from those for the new ones

Moore machine, Construct a Moore machine to convert a binary string of radi...

Construct a Moore machine to convert a binary string of radix 4.

Kleenes theorem, All that distinguishes the de?nition of the class of Regul...

All that distinguishes the de?nition of the class of Regular languages from that of the class of Star-Free languages is that the former is closed under Kleene closure while the lat

Possibility of recognizing the palindrome language, Computer has a single F...

Computer has a single FIFO queue of ?xed precision unsigned integers with the length of the queue unbounded. You can use access methods similar to those in the third model. In this

Production, How useful is production function in production planning?

How useful is production function in production planning?

Define ambiguity in cfg, Define the following concept with an example: a.  ...

Define the following concept with an example: a.    Ambiguity in CFG b.    Push-Down Automata c.    Turing Machine

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd