Myhill-nerode theorem, Theory of Computation

Assignment Help:

This close relationship between the SL2 languages and the recognizable languages lets us use some of what we know about SL2 to discover properties of the recognizable languages. Because they are SL2 languages, the runs of an automaton A (and, equivalently, the strings of pairs licensed by G2A) will satisfy the 2-suffix substitution closure property. This means that every recognizable language L is a homomorphic image of some language L′ (over an alphabet Σ′ , say) for which

                                                             u′1σ′v′1 ∈ L′ and u′2 σ′v′2 ∈ L′⇒ u′1σ′v′2( and u′2σ′v′1) ∈ L′.

Moreover, u′1σ′v′1 ∈ L′ and u′1σ′v′2 ∈ L′⇒ u′2σ′v′2 ∈ L′

The hypothetical u′1σ′ and u′2σ′ are indistinguishable by the language. Any continuation that extends one to a string in L′ will also extend the other to a string in L′ ; any continuation that extends one to a string not in L′ will extend the other to a string not in L′.

For the SL2 language L′ the strings that are indistinguishable in this way are marked by their ?nal symbol. Things are not as clear for the recognizable language L because the homomorphism may map many symbols of Σ′ to the same symbol of Σ. So it will not generally be the case that we can easily identify the sets of strings that are indistinguishable in this way. But they will, nevertheless, exist. There will be pairs of strings u1 and u2 - namely the homomorphic images of the pairs u′1σ′ and u′2σ′-for which any continuation v, it will be the case that u1v ∈ L iff u2v ∈ L.

This equivalence between strings (in the sense of being indistinguishable by the language in this way) is the key to characterizing the recognizable languages purely in terms of the strings they contain in a way analogous to the way suffix substitution closure characterizes the SL2.


Related Discussions:- Myhill-nerode theorem

Overview of dfa, Explain Theory of Computation ,Overview of DFA,NFA, CFG, P...

Explain Theory of Computation ,Overview of DFA,NFA, CFG, PDA, Turing Machine, Regular Language, Context Free Language, Pumping Lemma, Context Sensitive Language, Chomsky Normal For

Myhill graphs, Another way of representing a strictly 2-local automaton is ...

Another way of representing a strictly 2-local automaton is with a Myhill graph. These are directed graphs in which the vertices are labeled with symbols from the input alphabet of

what is a turing machine, A Turing machine is a theoretical computing mach...

A Turing machine is a theoretical computing machine made-up by Alan Turing (1937) to serve as an idealized model for mathematical calculation. A Turing machine having of a line of

Turing machine, Can v find the given number is palindrome or not using turi...

Can v find the given number is palindrome or not using turing machine

REGULAR GRAMMAR, Find the Regular Grammar for the following Regular Express...

Find the Regular Grammar for the following Regular Expression: a(a+b)*(ab*+ba*)b.

Non - sl languages, Application of the general suffix substitution closure ...

Application of the general suffix substitution closure theorem is slightly more complicated than application of the specific k-local versions. In the specific versions, all we had

A composable-reset DFA (CR-DFA) is a five-tuple, Question 2 (10 pt): In thi...

Question 2 (10 pt): In this question we look at an extension to DFAs. A composable-reset DFA (CR-DFA) is a five-tuple, (Q,S,d,q0,F) where: – Q is the set of states, – S is the alph

Strictly k-local automata, Strictly 2-local automata are based on lookup ta...

Strictly 2-local automata are based on lookup tables that are sets of 2-factors, the pairs of adjacent symbols which are permitted to occur in a word. To generalize, we extend the

#dfa, Give DFA''s accepting the following languages over the alphabet {0,1}...

Give DFA''s accepting the following languages over the alphabet {0,1}: i. The set of all strings beginning with a 1 that, when interpreted as a binary integer, is a multiple of 5.

Automata, As we are primarily concerned with questions of what is and what ...

As we are primarily concerned with questions of what is and what is not computable relative to some particular model of computation, we will usually base our explorations of langua

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd