Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
This close relationship between the SL2 languages and the recognizable languages lets us use some of what we know about SL2 to discover properties of the recognizable languages. Because they are SL2 languages, the runs of an automaton A (and, equivalently, the strings of pairs licensed by G2A) will satisfy the 2-suffix substitution closure property. This means that every recognizable language L is a homomorphic image of some language L′ (over an alphabet Σ′ , say) for which
u′1σ′v′1 ∈ L′ and u′2 σ′v′2 ∈ L′⇒ u′1σ′v′2( and u′2σ′v′1) ∈ L′.
Moreover, u′1σ′v′1 ∈ L′ and u′1σ′v′2 ∈ L′⇒ u′2σ′v′2 ∈ L′
The hypothetical u′1σ′ and u′2σ′ are indistinguishable by the language. Any continuation that extends one to a string in L′ will also extend the other to a string in L′ ; any continuation that extends one to a string not in L′ will extend the other to a string not in L′.
For the SL2 language L′ the strings that are indistinguishable in this way are marked by their ?nal symbol. Things are not as clear for the recognizable language L because the homomorphism may map many symbols of Σ′ to the same symbol of Σ. So it will not generally be the case that we can easily identify the sets of strings that are indistinguishable in this way. But they will, nevertheless, exist. There will be pairs of strings u1 and u2 - namely the homomorphic images of the pairs u′1σ′ and u′2σ′-for which any continuation v, it will be the case that u1v ∈ L iff u2v ∈ L.
This equivalence between strings (in the sense of being indistinguishable by the language in this way) is the key to characterizing the recognizable languages purely in terms of the strings they contain in a way analogous to the way suffix substitution closure characterizes the SL2.
When we study computability we are studying problems in an abstract sense. For example, addition is the problem of, having been given two numbers, returning a third number that is
Theorem The class of recognizable languages is closed under Boolean operations. The construction of the proof of Lemma 3 gives us a DFA that keeps track of whether or not a give
construct a social network from the real-world data, perform some simple network analyses using Gephi, and interpret the results.
Another striking aspect of LTk transition graphs is that they are generally extremely ine?cient. All we really care about is whether a path through the graph leads to an accepting
One might assume that non-closure under concatenation would imply non closure under both Kleene- and positive closure, since the concatenation of a language with itself is included
constract context free g ={ a^n b^m : m,n >=0 and n
how to understand DFA ?
A problem is said to be unsolvable if no algorithm can solve it. The problem is said to be undecidable if it is a decision problem and no algorithm can decide it. It should be note
All that distinguishes the de?nition of the class of Regular languages from that of the class of Star-Free languages is that the former is closed under Kleene closure while the lat
The Equivalence Problem is the question of whether two languages are equal (in the sense of being the same set of strings). An instance is a pair of ?nite speci?cations of regular
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd