Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
This close relationship between the SL2 languages and the recognizable languages lets us use some of what we know about SL2 to discover properties of the recognizable languages. Because they are SL2 languages, the runs of an automaton A (and, equivalently, the strings of pairs licensed by G2A) will satisfy the 2-suffix substitution closure property. This means that every recognizable language L is a homomorphic image of some language L′ (over an alphabet Σ′ , say) for which
u′1σ′v′1 ∈ L′ and u′2 σ′v′2 ∈ L′⇒ u′1σ′v′2( and u′2σ′v′1) ∈ L′.
Moreover, u′1σ′v′1 ∈ L′ and u′1σ′v′2 ∈ L′⇒ u′2σ′v′2 ∈ L′
The hypothetical u′1σ′ and u′2σ′ are indistinguishable by the language. Any continuation that extends one to a string in L′ will also extend the other to a string in L′ ; any continuation that extends one to a string not in L′ will extend the other to a string not in L′.
For the SL2 language L′ the strings that are indistinguishable in this way are marked by their ?nal symbol. Things are not as clear for the recognizable language L because the homomorphism may map many symbols of Σ′ to the same symbol of Σ. So it will not generally be the case that we can easily identify the sets of strings that are indistinguishable in this way. But they will, nevertheless, exist. There will be pairs of strings u1 and u2 - namely the homomorphic images of the pairs u′1σ′ and u′2σ′-for which any continuation v, it will be the case that u1v ∈ L iff u2v ∈ L.
This equivalence between strings (in the sense of being indistinguishable by the language in this way) is the key to characterizing the recognizable languages purely in terms of the strings they contain in a way analogous to the way suffix substitution closure characterizes the SL2.
It is not hard to see that ε-transitions do not add to the accepting power of the model. The underlying idea is that whenever an ID (q, σ v) directly computes another (p, v) via
Find the Regular Grammar for the following Regular Expression: a(a+b)*(ab*+ba*)b.
We have now de?ned classes of k-local languages for all k ≥ 2. Together, these classes form the Strictly Local Languages in general. De?nition (Strictly Local Languages) A langu
The fact that the Recognition Problem is decidable gives us another algorithm for deciding Emptiness. The pumping lemma tells us that if every string x ∈ L(A) which has length grea
dfa for (00)*(11)*
In Exercise 9 you showed that the recognition problem and universal recognition problem for SL2 are decidable. We can use the structure of Myhill graphs to show that other problems
One of the first issues to resolve, when exploring any mechanism for defining languages is the question of how to go about constructing instances of the mechanism which define part
As we are primarily concerned with questions of what is and what is not computable relative to some particular model of computation, we will usually base our explorations of langua
i have some questions in automata, can you please help me in solving in these questions?
mmmm
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd