Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Theorem (Myhill-Nerode) A language L ⊆ Σ is recognizable iff ≡L partitions Σ* into ?nitely many Nerode equivalence classes.
Proof: For the "only if" direction (that every recognizable language has ?nitely many Nerode equivalence classes) observe that L ∈ Recog iff L = L(A) for some DFA A and that if δ(q0,w) = δ(q0, u) (i.e., if the path from the start state labeled w and that labeled u end up at the same state) then w ≡L u. This is a consequence of the fact that the state ˆ δ(q0,w) encodes all the information the automaton remembers about the string w. If v extends w to wv ∈ L(A) then v is the label of a path to an accepting state from δ(q0,w). Since this is the same state as δ(q0, u) the same path witnesses that uv ∈ L. Similarly, if the path leads one to a non-accepting state then it must necessarily lead the other to the same state. The automaton has no way of distinguishing two strings that lead to the same state and, consequently, the language it recognizes cannot distinguish them. Since A is deterministic, every string in Σ* labels a path leading to some state, hence the equivalence classes corresponding to the states partition Σ*. Since the automaton has ?nitely many states, it distinguishes ?nitely many equivalence classes.
The Emptiness Problem is the problem of deciding if a given regular language is empty (= ∅). Theorem 4 (Emptiness) The Emptiness Problem for Regular Languages is decidable. P
what are the advantages and disadvantages of wearable computers?
In general non-determinism, by introducing a degree of parallelism, may increase the accepting power of a model of computation. But if we subject NFAs to the same sort of analysis
State & prove pumping lemma for regular set. Show that for the language L={ap |p is a prime} is not regular
build a TM that enumerate even set of even length string over a
proof of arden''s theoram
unification algorithm
When we say "solved algorithmically" we are not asking about a speci?c programming language, in fact one of the theorems in computability is that essentially all reasonable program
LTO was the closure of LT under concatenation and Boolean operations which turned out to be identical to SF, the closure of the ?nite languages under union, concatenation and compl
conversion from nfa to dfa 0 | 1 ___________________ p |{q,s}|{q} *q|{r} |{q,r} r |(s) |{p} *s|null |{p}
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd