Myhill-nerode, Theory of Computation

Assignment Help:

Theorem (Myhill-Nerode) A language L ⊆ Σ is recognizable iff ≡L partitions Σ* into ?nitely many Nerode equivalence classes.

Proof: For the "only if" direction (that every recognizable language has ?nitely many Nerode equivalence classes) observe that L ∈ Recog iff L = L(A) for some DFA A and that if δ(q0,w) = δ(q0, u) (i.e., if the path from the start state labeled w and that labeled u end up at the same state) then w ≡L u. This is a consequence of the fact that the state ˆ δ(q0,w) encodes all the information the automaton remembers about the string w. If v extends w to wv ∈ L(A) then v is the label of a path to an accepting state from δ(q0,w). Since this is the same state as δ(q0, u) the same path witnesses that uv ∈ L. Similarly, if the path leads one to a non-accepting state then it must necessarily lead the other to the same state. The automaton has no way of distinguishing two strings that lead to the same state and, consequently, the language it recognizes cannot distinguish them. Since A is deterministic, every string in Σ* labels a path leading to some state, hence the equivalence classes corresponding to the states partition Σ*. Since the automaton has ?nitely many states, it distinguishes ?nitely many equivalence classes.


Related Discussions:- Myhill-nerode

Flow charts, https://www.google.com/search?q=The+fomula+n%3D%28x%3D0%29%2F%...

https://www.google.com/search?q=The+fomula+n%3D%28x%3D0%29%2F%281%3D2%29.The+value+x%3D0+and+is+used+to+stop+the+algerithin.The+calculation+is+reapeated+using+values+of+x%3D0+is+in

Brain game, If the first three words are the boys down,what are the last th...

If the first three words are the boys down,what are the last three words??

Non - sl languages, Application of the general suffix substitution closure ...

Application of the general suffix substitution closure theorem is slightly more complicated than application of the specific k-local versions. In the specific versions, all we had

Myhill-nerode, Theorem (Myhill-Nerode) A language L ⊆ Σ is recognizable iff...

Theorem (Myhill-Nerode) A language L ⊆ Σ is recognizable iff ≡L partitions Σ* into ?nitely many Nerode equivalence classes. Proof: For the "only if" direction (that every recogn

Graph Connectivity, Let G be a graph with n > 2 vertices with (n2 - 3n + 4)...

Let G be a graph with n > 2 vertices with (n2 - 3n + 4)/2 edges. Prove that G is connected.

Discrete math, Find the Regular Grammar for the following Regular Expressio...

Find the Regular Grammar for the following Regular Expression: a(a+b)*(ab*+ba*)b.

Moore machine, Construct a Moore machine to convert a binary string of radi...

Construct a Moore machine to convert a binary string of radix 4.

Kleene closure, So we have that every language that can be constructed from...

So we have that every language that can be constructed from SL languages using Boolean operations and concatenation (that is, every language in LTO) is recognizable but there are r

Assignment, Consider a water bottle vending machine as a finite–state autom...

Consider a water bottle vending machine as a finite–state automaton. This machine is designed to accept coins of Rs. 2 and 5 only. It dispenses a single water bottle as soon as the

Local and recognizable languages, We developed the idea of FSA by generaliz...

We developed the idea of FSA by generalizing LTk transition graphs. Not surprisingly, then, every LTk transition graph is also the transition graph of a FSA (in fact a DFA)-the one

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd