Myhill-nerode, Theory of Computation

Assignment Help:

Theorem (Myhill-Nerode) A language L ⊆ Σ is recognizable iff ≡L partitions Σ* into ?nitely many Nerode equivalence classes.

Proof: For the "only if" direction (that every recognizable language has ?nitely many Nerode equivalence classes) observe that L ∈ Recog iff L = L(A) for some DFA A and that if δ(q0,w) = δ(q0, u) (i.e., if the path from the start state labeled w and that labeled u end up at the same state) then w ≡L u. This is a consequence of the fact that the state ˆ δ(q0,w) encodes all the information the automaton remembers about the string w. If v extends w to wv ∈ L(A) then v is the label of a path to an accepting state from δ(q0,w). Since this is the same state as δ(q0, u) the same path witnesses that uv ∈ L. Similarly, if the path leads one to a non-accepting state then it must necessarily lead the other to the same state. The automaton has no way of distinguishing two strings that lead to the same state and, consequently, the language it recognizes cannot distinguish them. Since A is deterministic, every string in Σ* labels a path leading to some state, hence the equivalence classes corresponding to the states partition Σ*. Since the automaton has ?nitely many states, it distinguishes ?nitely many equivalence classes.


Related Discussions:- Myhill-nerode

Toc, how to understand DFA ?

how to understand DFA ?

Numerical integration, what problems are tackled under numerical integratio...

what problems are tackled under numerical integration

Deterministic finite state automaton, De?nition Deterministic Finite State ...

De?nition Deterministic Finite State Automaton: For any state set Q and alphabet Σ, both ?nite, a ?nite state automaton (FSA) over Q and Σ is a ?ve-tuple (Q,Σ, T, q 0 , F), w

Can you help me in automata questions, i have some questions in automata, c...

i have some questions in automata, can you please help me in solving in these questions?

Example of finite state automaton, The initial ID of the automaton given in...

The initial ID of the automaton given in Figure 3, running on input ‘aabbba' is (A, aabbba) The ID after the ?rst three transitions of the computation is (F, bba) The p

Non-determinism - recognizable language, Our DFAs are required to have exac...

Our DFAs are required to have exactly one edge incident from each state for each input symbol so there is a unique next state for every current state and input symbol. Thus, the ne

Strictly k-local automata, Strictly 2-local automata are based on lookup ta...

Strictly 2-local automata are based on lookup tables that are sets of 2-factors, the pairs of adjacent symbols which are permitted to occur in a word. To generalize, we extend the

A composable-reset DFA (CR-DFA) is a five-tuple, Question 2 (10 pt): In thi...

Question 2 (10 pt): In this question we look at an extension to DFAs. A composable-reset DFA (CR-DFA) is a five-tuple, (Q,S,d,q0,F) where: – Q is the set of states, – S is the alph

Pojects idea, i want to do projects for theory of computation subject what ...

i want to do projects for theory of computation subject what topics should be best.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd