Myhill graphs, Theory of Computation

Assignment Help:

Another way of representing a strictly 2-local automaton is with a Myhill graph. These are directed graphs in which the vertices are labeled with symbols from the input alphabet of the automaton (plus {x,x}), with an edge from a vertex labeled σ1 to a vertex labeled σ2 ix the pair σ1σ2 is included in T. (Note that if we interpret the strings in T as pairs of symbols, then the Myhill graph of A = (Σ, T) is just G = (Σ+, T).) The Myhill graph of the automaton of Figure 2 is given in Figure. For consistency with the graphs we will use later, the entry point to the graph is indicated with an edge "from nowhere" and the exit point is indicated by circling it.

The key property of Myhill graphs is that every path through the graph from the ‘x' node to the ‘x' node corresponds to a computation of the automaton and every computation of the automaton corresponds to such a path. So we can reason about the strings that are accepted by the automaton by reasoning about the sequences of nodes that occur on paths from ‘x' to ‘x'. (For simplicity, we will refer to paths from ‘x' to ‘x' as "paths through the graph".)

For example, the shortest strings in the language recognized by the automaton will those labeling the shortest paths through the graph, which is to say, the acyclic paths from ‘x' to ‘x'. In this particular case, these are the paths (x,x) and (x, a, b,x), corresponding to the strings ε and ab.


Related Discussions:- Myhill graphs

Pendulum Swings, how many pendulum swings will it take to walk across the c...

how many pendulum swings will it take to walk across the classroom?

Turing, turing machine for prime numbers

turing machine for prime numbers

Automata answer, build a TM that enumerate even set of even length string o...

build a TM that enumerate even set of even length string over a

Decision problems, In Exercise 9 you showed that the recognition problem an...

In Exercise 9 you showed that the recognition problem and universal recognition problem for SL2 are decidable. We can use the structure of Myhill graphs to show that other problems

Myhill graphs, Another way of representing a strictly 2-local automaton is ...

Another way of representing a strictly 2-local automaton is with a Myhill graph. These are directed graphs in which the vertices are labeled with symbols from the input alphabet of

Defining strictly local automata, One of the first issues to resolve, when ...

One of the first issues to resolve, when exploring any mechanism for defining languages is the question of how to go about constructing instances of the mechanism which define part

Finiteness of languages is decidable, To see this, note that if there are a...

To see this, note that if there are any cycles in the Myhill graph of A then L(A) will be infinite, since any such cycle can be repeated arbitrarily many times. Conversely, if the

Give the acyclic paths through your graph, Give the Myhill graph of your au...

Give the Myhill graph of your automaton. (You may use a single node to represent the entire set of symbols of the English alphabet, another to represent the entire set of decima

Applying the pumping lemma, Applying the pumping lemma is not fundamentally...

Applying the pumping lemma is not fundamentally di?erent than applying (general) su?x substitution closure or the non-counting property. The pumping lemma is a little more complica

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd