Myhill graphs, Theory of Computation

Assignment Help:

Another way of representing a strictly 2-local automaton is with a Myhill graph. These are directed graphs in which the vertices are labeled with symbols from the input alphabet of the automaton (plus {x,x}), with an edge from a vertex labeled σ1 to a vertex labeled σ2 ix the pair σ1σ2 is included in T. (Note that if we interpret the strings in T as pairs of symbols, then the Myhill graph of A = (Σ, T) is just G = (Σ+, T).) The Myhill graph of the automaton of Figure 2 is given in Figure. For consistency with the graphs we will use later, the entry point to the graph is indicated with an edge "from nowhere" and the exit point is indicated by circling it.

The key property of Myhill graphs is that every path through the graph from the ‘x' node to the ‘x' node corresponds to a computation of the automaton and every computation of the automaton corresponds to such a path. So we can reason about the strings that are accepted by the automaton by reasoning about the sequences of nodes that occur on paths from ‘x' to ‘x'. (For simplicity, we will refer to paths from ‘x' to ‘x' as "paths through the graph".)

For example, the shortest strings in the language recognized by the automaton will those labeling the shortest paths through the graph, which is to say, the acyclic paths from ‘x' to ‘x'. In this particular case, these are the paths (x,x) and (x, a, b,x), corresponding to the strings ε and ab.


Related Discussions:- Myhill graphs

Automata, As we are primarily concerned with questions of what is and what ...

As we are primarily concerned with questions of what is and what is not computable relative to some particular model of computation, we will usually base our explorations of langua

Boolean operations - class of recognizable languages, Theorem The class of ...

Theorem The class of recognizable languages is closed under Boolean operations. The construction of the proof of Lemma 3 gives us a DFA that keeps track of whether or not a give

Equivalence of nfas, It is not hard to see that ε-transitions do not add to...

It is not hard to see that ε-transitions do not add to the accepting power of the model. The underlying idea is that whenever an ID (q, σ  v) directly computes another (p, v) via

Turing, turing machine for prime numbers

turing machine for prime numbers

Closure properties to prove regularity, The fact that regular languages are...

The fact that regular languages are closed under Boolean operations simpli?es the process of establishing regularity of languages; in essence we can augment the regular operations

Bonds, . On July 1, 2010, Harris Co. issued 6,000 bonds at $1,000 each. The...

. On July 1, 2010, Harris Co. issued 6,000 bonds at $1,000 each. The bonds paid interest semiannually at 5%. The bonds had a term of 20 years. At the time of issuance, the market r

Discrete math, Find the Regular Grammar for the following Regular Expressio...

Find the Regular Grammar for the following Regular Expression: a(a+b)*(ab*+ba*)b.

Notes, write short notes on decidable and solvable problem

write short notes on decidable and solvable problem

Local myhill graphs, Myhill graphs also generalize to the SLk case. The k-f...

Myhill graphs also generalize to the SLk case. The k-factors, however, cannot simply denote edges. Rather the string σ 1 σ 2 ....... σ k-1 σ k asserts, in essence, that if we hav

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd