Myhill graphs, Theory of Computation

Assignment Help:

Another way of representing a strictly 2-local automaton is with a Myhill graph. These are directed graphs in which the vertices are labeled with symbols from the input alphabet of the automaton (plus {x,x}), with an edge from a vertex labeled σ1 to a vertex labeled σ2 ix the pair σ1σ2 is included in T. (Note that if we interpret the strings in T as pairs of symbols, then the Myhill graph of A = (Σ, T) is just G = (Σ+, T).) The Myhill graph of the automaton of Figure 2 is given in Figure. For consistency with the graphs we will use later, the entry point to the graph is indicated with an edge "from nowhere" and the exit point is indicated by circling it.

The key property of Myhill graphs is that every path through the graph from the ‘x' node to the ‘x' node corresponds to a computation of the automaton and every computation of the automaton corresponds to such a path. So we can reason about the strings that are accepted by the automaton by reasoning about the sequences of nodes that occur on paths from ‘x' to ‘x'. (For simplicity, we will refer to paths from ‘x' to ‘x' as "paths through the graph".)

For example, the shortest strings in the language recognized by the automaton will those labeling the shortest paths through the graph, which is to say, the acyclic paths from ‘x' to ‘x'. In this particular case, these are the paths (x,x) and (x, a, b,x), corresponding to the strings ε and ab.


Related Discussions:- Myhill graphs

Tuning machine, design a tuning machine for penidrome

design a tuning machine for penidrome

Non - sl languages, The key thing about the Suffx Substitution Closure prop...

The key thing about the Suffx Substitution Closure property is that it does not make any explicit reference to the automaton that recognizes the language. While the argument tha

Complement - operations on languages, The fact that SL 2 is closed under i...

The fact that SL 2 is closed under intersection but not under union implies that it is not closed under complement since, by DeMorgan's Theorem L 1 ∩ L 2 = We know that

Strictly 2-local languages, The fundamental idea of strictly local language...

The fundamental idea of strictly local languages is that they are speci?ed solely in terms of the blocks of consecutive symbols that occur in a word. We'll start by considering lan

Automaton theory, let G=(V,T,S,P) where V={a,b,A,B,S}, T={a,b},S the start ...

let G=(V,T,S,P) where V={a,b,A,B,S}, T={a,b},S the start symbol and P={S->Aba, A->BB, B->ab,AB->b} 1.show the derivation sentence for the string ababba 2. find a sentential form

Transition graphs, We represented SLk automata as Myhill graphs, directed g...

We represented SLk automata as Myhill graphs, directed graphs in which the nodes were labeled with (k-1)-factors of alphabet symbols (along with a node labeled ‘?' and one labeled

How to solve the checking problem, The objective of the remainder of this a...

The objective of the remainder of this assignment is to get you thinking about the problem of recognizing strings given various restrictions to your model of computation. We will w

Union, Intuitively, closure of SL 2 under intersection is reasonably easy ...

Intuitively, closure of SL 2 under intersection is reasonably easy to see, particularly if one considers the Myhill graphs of the automata. Any path through both graphs will be a

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd