Mutually exclusive events, Mathematics

Assignment Help:

Mutually Exclusive Events

A set of events is said to be mutually exclusive if the occurrence of any one of the events precludes the occurrence of any of the other events for illustration, when tossing a coin, the events are a head or a tail these are said to be mutually exclusive because the occurrence of heads for instance implies that tails cannot and has not happened.

This can be represented in venn diagram as given below:

631_Mutually exclusive events 1.png

E1 ∩ E2 = Ø

1288_Mutually exclusive events 2.png

E1 ∩ E2 ≠ Ø

Non-mutually exclusive events (independent events)

Consider a survey whether a random sample of registered voters is selected.  For every voter selected their sex and political party affiliation are noted. The events "KANU" and "woman" are not equally exclusive since the selection of KANU does not preclude the possibly that the voter is also a woman.

Independent Events

Events are said to be independent when the occurrence of any type of the events does not affect the occurrence of the other(s).For illustration the outcome of tossing a coin is independent of the outcome of the preceding or succeeding toss.


Related Discussions:- Mutually exclusive events

Probability distribution for continuous random variables, Probability Distr...

Probability Distribution for Continuous Random Variables In a continuous distribution, the variable can take any value within a specified range, e.g. 2.21 or 1.64 compared to

Find the slope of this line, The following graph shows the growth of the me...

The following graph shows the growth of the median home value in a particular region of the United States starting in 1996.  The graphs starts in 1996 and shows the trend through t

Mathematics Warm-Ups for CCSS, Ask question #Minimum 100 words accepted wha...

Ask question #Minimum 100 words accepted what is a ratio

Calculate frequencies for two modes of vibration, A partially loaded passen...

A partially loaded passenger car has a mass of 1600 kg.  It has fully independent suspension in which each front spring has a stiffness of 19.0 kNm -1 and each rear spring has a s

Conversion\, how many mg are there in g?

how many mg are there in g?

Examples of complex numbers, Following are some examples of complex numbers...

Following are some examples of complex numbers. 3 + 5i                                                 √6 -10i (4/5) + 1           16i                     113 The last t

Permutation, HOW MANY number laying between 100 and 1000 can be formed with...

HOW MANY number laying between 100 and 1000 can be formed with 0,1,2,3,4,5 and also divisible by 5 with distinct digit

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd