Multiplication of binomials, Mathematics

Assignment Help:

To understand the multiplication of binomials, we should know what is meant by Distributive Law of Multiplication. Suppose that we are to multiply (a + b) and m. We treat (a + b) as a compound expression and m as a simple expression.  Therefore,  (a + b)m by definition will be:

         =       m + m + m + m + ....... taken a + b times

         =       (m + m + m + .... taken a times) + (m + m + m + ..... taken b times)

         =       am + bm

Similarly (a - b)m = am - bm and (a - b + c)m = am - bm + cm. This is referred to as Distributive Law of Multiplication and it says that the product of a compound expression by a simple expression is the algebraic sum of the partial products of each term of the compound expression by that simple expression.

         In the above, if we write (c + d) in place of m we will have

         (a + b)(c + d)    =              a(c + d) + b(c + d)

                                =              ac + ad + bc + bd

1. Multiply (3a + d) and (b + c).

We employ (a + b)(c + d) = a(c + d) + b(c + d)   = ac + ad + bc + bd. Therefore, (3a + d)(b + c)   = 3a(b + c) + d(b + c) = 3ab + 3ac + bd + cd. (This procedure can be extended to trinomials and polynomials also.)

2. Multiply 2a + 5c and 3d + 2b.

         One way of doing this is to employ (a + b)(c + d) = ac + ad + bc + bd

         That is,

         (2a + 5c)(3d + 2b) = 2a(3d + 2b) + 5c(3d + 2b)

                                   = 6ad + 4ab + 15cd + 10bc

In the second method, we position the binomials as we did in addition or subtraction and do the multiplication operation. That is,

                                      2a + 5c

(x)

3d + 2b

 

 

6ad + 15cd

 

 

+ 4ab  + 10bc

 

6ad + 15cd + 4ab + 10bc

This product is the same as one obtained earlier.

Multiply 1180_multiplication of binomials.png and 37_multiplication of binomials2.png

That is, we have to compute

1242_multiplication of binomials3.png

We write this as

1089_multiplication of binomials4.png 

(Note: While multiplying fractions, numerators and denominators of given fractions are multiplied respectively and the product also being expressed as a fraction.)

  1. Add 3ac + 5bd - 7cd and ac - 5bd - 4cd

  3ac + 5bd - 7cd

(+)

ac - 5bd - 4cd
  4ac +  0  - 11cd
  1. Multiply 3a + 5b - 7d and c - 4e - 5

That is, we require (3a + 5b - 7d) x (c - 4e - 5)

= 3a (c - 4e - 5) + 5b (c - 4e - 5) - 7d(c - 4e - 5)

= 3ac - 12ae - 15a + 5bc - 20be - 25b - 7cd + 28de + 35d


Related Discussions:- Multiplication of binomials

Monomial, express the area of a square with sides of length 5ab as monomial...

express the area of a square with sides of length 5ab as monomial

Geometric interpretation of the cross product, Geometric Interpretation of ...

Geometric Interpretation of the Cross Product There is as well a geometric interpretation of the cross product.  Firstly we will let θ be the angle in between the two vectors a

, What is 124 out of 300 in percent

What is 124 out of 300 in percent ?

Indices, what are the advantages and disadvantages of both Laspeyres and Pa...

what are the advantages and disadvantages of both Laspeyres and Paasche index

Calculus, need someone to log into my hawkes and complete homework due

need someone to log into my hawkes and complete homework due

Solve the subsequent lp problem, Solve the subsequent LP problem graphicall...

Solve the subsequent LP problem graphically through enumerating the corner points. MAX:              3X1 + 4X2 Subject to:    X1   12                     X2    10

Calculate maximum area of the triangle, if the sum of lengths of hypotenuse...

if the sum of lengths of hypotenuse and a side of right triangle are given, prove the area of the triangle is maximum when angle between them is pi/3

Example of the invisible effort, Imagine a time in history when the number ...

Imagine a time in history when the number system had not yet evolved a farmer needed to keep track of his cattle. What would he do to figure out whether his entire rattle returned

Logarithm functions, Logarithm Functions : In this section we'll discuss l...

Logarithm Functions : In this section we'll discuss look at a function which is related to the exponential functions we will learn logarithms in this section. Logarithms are one o

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd