Multilevel models, Advanced Statistics

Assignment Help:

 

Multilevel models are the regression models for the multilevel or clustered data where units i are nested in the clusters j, for example a cross-sectional study where students are nested in schools or the longitudinal studies where measurement occasions are nested in subjects. In multilevel data responses are expected to be dependent or correlated even after the conditioning on observed covariates. Such dependence should be taken into account to ensure the valid statistical inference.

Multilevel regression models comprise random effects with the normal distributions to induce dependence among units belonging in the cluster. The simplest multilevel model is the linear random intercept model
1202_Multilevel Models.png 
The multilevel generalized linear models or the generalized linear mixed models are multilevel models where random effects are introduced in linear predictor of generalized linear models. Additionally to linear models for the continuous responses, such type of models include, for instance, the logistic random effects models for dichotomous, ordinal and nominal responses and the log-linear random effects models for counts.

Multilevel models can also be specified for the higher-level data where units are nested in clusters which are nested in the superclusters. An instance of such a design would be measurement occasions nested in subjects which are nested in communities. Other terms sometimes used for the multilevel models include mixed models, random effects models hierarchical models, and random coeffiencnt models.

 


Related Discussions:- Multilevel models

Ecm algorithm, This is extension of the EM algorithm which typically conver...

This is extension of the EM algorithm which typically converges more slowly than EM in terms of the iterations but can be much faster in the whole computer time. The general idea o

Data squashing, An approach to decrease the size of very large data sets in...

An approach to decrease the size of very large data sets in which the data are first 'binned' and then statistics such as the mean and variance/covariance are calculated on each bi

Explain personal probabilities, Personal probabilities : A radically specia...

Personal probabilities : A radically special approach for allocating probabilities to events than, for instance, the commonly used long-term relative frequency approach. In this ty

Hanging rootogram, Hanging rootogram is   he diagram comparing the observe...

Hanging rootogram is   he diagram comparing the observed rootogram with the ?tted curve, in which dissimilarities between the two are displayed in relation to the horizontal axis,

Design, Difference between tretment design and experimental design

Difference between tretment design and experimental design

Matching, Matching is the method of making a study group and a comparison ...

Matching is the method of making a study group and a comparison group comparable with respect to the extraneous factors. Generally used in the retrospective studies when selecting

Hypergeometric distribution, Hypergeometric distribution is t he probabili...

Hypergeometric distribution is t he probability distribution related with the sampling without replacement from the population of finite size. If the population comprises of r ele

Whites general heteroscedasticity test, The Null Hypothesis - H0:  γ 1 = γ...

The Null Hypothesis - H0:  γ 1 = γ 2 = ...  =  0  i.e.  there is no heteroscedasticity in the model The Alternative Hypothesis - H1:  at least one of the γ i 's are not equal

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd