Moving coil transducers, Electrical Engineering

Assignment Help:

Note transducers  convert a physical quantity from one  form to another.  The case below illustrates a typical moving coil meter   that   converts   a   current into a mechanical angular displacement

156_Moving coil transducers.png

The coil is wound on an aluminium frame  (aluminium is non-magnetic, hence µ~µ0  )supported on two pivots top and bottom. The frame rotates over a soft iron core  (with a v.high µ), that is fixed. It does not rotate with the coil because the coil and frame should have minimum inertia for a rapid response to transient currents. Magnets either side, have shaped pole pieces to ensure that the coil experiences the field in a constant air gap regardless of the angle of the coil on the core. To ensure maximum field strength for a given permanent magnet strength, the two air gaps (one either side of the coil) are the only air gaps in the magnetic circuit. If a current flows in the coil, the coil experiences a torque due to the Lorenz force between the current carrying vertical edges of the coil and the magnetic field. This torque causes a deflection of the coil against a restraining spring so the final equilibrium position of the coil is a measure of the torque being experienced
by the coil, which in turn is proportional to the current flowing in it.

A needle attached to the moving coil rotates along a scale calibrated to read current, voltage etc. In the case of a voltmeter, the coil has a large number of turns so that a reasonable torque is produced with very little current - i.e. the meter has a high resistance and draws very little current. In contrast, a current meter will have relatively few turns of large diameter, so the torque is produced by a relatively large current. It represents very little resistance and drops very little voltage.  Because of the shaped pole pieces, the field is radial and constant across the air gap. Hence the force experienced by each vertical edge of the coil is:


F=B.i.L.N

 

where   B = flux density
  i = current flowing in the coil
  l = length of the coil edge
N = number of turns on the coil.

If the coil is d metres wide, the total torque produced on the coil is:

T=2.B.i.L/N.d/2=B.i.N.A

If the spring has a spring constant c Newton.metres/radian (hence the spring constant is the torque required to produce an angular movement of one radian), then the current in the coil in equilibrium is :

i=c. O/B.A.N

Thus i and θ have a linear relationship and the sensitivity of an ammeter is expressed as:

O/i=B.A.N/c

For a voltmeter the sensitivity is expressed in terms of θ and the applied voltage. This may be related to the coil resistance R by

v= i.R , so

 

O/v=B.A.N/c.R

 

Moving coil meters can (but not always)  have high sensitivity, uniform scale and low power consumption. However, to meet all these requirements they will be expensive, especially if high sensitivity is required, (N high, c low) and will not be very robust. They are used for DC only. (AC meters of this construction are readily available, but these convert AC into DC first, using a rectifier).

 

 

 

 

 


Related Discussions:- Moving coil transducers

Dc circuits, Dc Circuits: In this unit, you have learned about methods...

Dc Circuits: In this unit, you have learned about methods of network analysis which are general in nature such as KCL, KVL, Nodal and Mesh analysis. These general methods may

Full wave rectifiers, how to determine the peak inverse voltage across idea...

how to determine the peak inverse voltage across ideal diodes

Calculate the approximate donor binding energy, Calculate the approximate d...

Calculate the approximate donor binding energy Calculate the approximate donor binding energy for Si (r = 11.7,m x n = 1.18 m 0 ) Solution: From E= m * n q 4 / 2(4 πε 0

Repeatability , Reproducibility and repeatability are measures of closeness...

Reproducibility and repeatability are measures of closeness with which a given input may be measured over again. The two terms cause confusion. Therefore, a distinction is made bet

Static rotor resistance control methods - motor control , Static Rotor Res...

Static Rotor Resistance Control Methods This method is used only for slip  ring induction motor in SRIM  3- phase  variable  resistor can be inserted in the rotor  circuit and

What is time switches, Q. What is Time Switches? Principle of a time sw...

Q. What is Time Switches? Principle of a time switch is displayed in Figure. It connects an incoming n channel PCM highway to an outgoing n channel PCM highway. As any incoming

Npn bipolar junction transistor, NPN: Figure: The symbol of an ...

NPN: Figure: The symbol of an NPN Bipolar Junction Transistor. NPN is one of the two sorts of bipolar transistors, where the letters "N" (negative) and "P" (positi

Test quipment, The frequency of an oscillator may be measured by an oscillo...

The frequency of an oscillator may be measured by an oscilloscope with a callbrated time base(True/False)

Compute the maximum value of the voltage induced in the coil, Q. The coil i...

Q. The coil is placed so that its axis of revolution is perpendicular to a uniform field, as shown in Figure If the flux per pole is 0.02 Wb, and the coil, consisting of 2 turns, i

Arithmetic operations, Arithmetic Operations Various  types of arithmet...

Arithmetic Operations Various  types of arithmetic  operations like addition subtraction increment and  decrement  are performed in 8085 microprocessor. Generally in these  ope

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd