Moving coil transducers, Electrical Engineering

Assignment Help:

Note transducers  convert a physical quantity from one  form to another.  The case below illustrates a typical moving coil meter   that   converts   a   current into a mechanical angular displacement

156_Moving coil transducers.png

The coil is wound on an aluminium frame  (aluminium is non-magnetic, hence µ~µ0  )supported on two pivots top and bottom. The frame rotates over a soft iron core  (with a v.high µ), that is fixed. It does not rotate with the coil because the coil and frame should have minimum inertia for a rapid response to transient currents. Magnets either side, have shaped pole pieces to ensure that the coil experiences the field in a constant air gap regardless of the angle of the coil on the core. To ensure maximum field strength for a given permanent magnet strength, the two air gaps (one either side of the coil) are the only air gaps in the magnetic circuit. If a current flows in the coil, the coil experiences a torque due to the Lorenz force between the current carrying vertical edges of the coil and the magnetic field. This torque causes a deflection of the coil against a restraining spring so the final equilibrium position of the coil is a measure of the torque being experienced
by the coil, which in turn is proportional to the current flowing in it.

A needle attached to the moving coil rotates along a scale calibrated to read current, voltage etc. In the case of a voltmeter, the coil has a large number of turns so that a reasonable torque is produced with very little current - i.e. the meter has a high resistance and draws very little current. In contrast, a current meter will have relatively few turns of large diameter, so the torque is produced by a relatively large current. It represents very little resistance and drops very little voltage.  Because of the shaped pole pieces, the field is radial and constant across the air gap. Hence the force experienced by each vertical edge of the coil is:


F=B.i.L.N

 

where   B = flux density
  i = current flowing in the coil
  l = length of the coil edge
N = number of turns on the coil.

If the coil is d metres wide, the total torque produced on the coil is:

T=2.B.i.L/N.d/2=B.i.N.A

If the spring has a spring constant c Newton.metres/radian (hence the spring constant is the torque required to produce an angular movement of one radian), then the current in the coil in equilibrium is :

i=c. O/B.A.N

Thus i and θ have a linear relationship and the sensitivity of an ammeter is expressed as:

O/i=B.A.N/c

For a voltmeter the sensitivity is expressed in terms of θ and the applied voltage. This may be related to the coil resistance R by

v= i.R , so

 

O/v=B.A.N/c.R

 

Moving coil meters can (but not always)  have high sensitivity, uniform scale and low power consumption. However, to meet all these requirements they will be expensive, especially if high sensitivity is required, (N high, c low) and will not be very robust. They are used for DC only. (AC meters of this construction are readily available, but these convert AC into DC first, using a rectifier).

 

 

 

 

 


Related Discussions:- Moving coil transducers

Write explanatory notes on 8284 clock generator, Write explanatory notes on...

Write explanatory notes on 8284 Clock generator. The 8284 is an ancillary element to the microprocessors. Without this clock generator, a few additional circuits are needed to

find the maximum power transferred and input resistance, Given: R 1 = R 3...

Given: R 1 = R 3 = 1 k_, R 2 = 100 k_ and k = 0.1 A/V, and step-up transformer turns ratio is 10. a) Find the value of the load resistor RL that would maximize the power

Explain global positioning systems, Q. Explain Global Positioning Systems? ...

Q. Explain Global Positioning Systems? Modern communication systems abound in practice: cellular phones, computer networks, television satellites, and optical links for telepho

Define abcd propagation , ABCD propagation of an optical ray through a s...

ABCD propagation of an optical ray through a system can be described by a straightforward two by two  matrix. In ray optics, the feature of a system is known by the correspondin

DC. motors, what''s the difference between DC. motors and AC. motors

what''s the difference between DC. motors and AC. motors

Determine the capacitor and inductor voltages, Experiment • Wire the circu...

Experiment • Wire the circuit shown in Figure. Connect the three oscilloscope channels as shown in Figure. • Select the sinusoidal waveform. Adjust the frequency of the input volt

Zero flag - registers , Zero Flag - Registers If the  result of any  a...

Zero Flag - Registers If the  result of any  arithmetical  or logical  operation in the accumulator  is zero i ,e  all the bits  of accumulator  ( with  some exceptions )  are

Draw the differentiator circuit, Q. Draw the differentiator circuit. Explai...

Q. Draw the differentiator circuit. Explain its principle of operation with necessary waveforms ? A circuit in which the output voltage is directly proportional to the derivati

Calculate the bandwidth and input-output resistance, Using the LM741operati...

Using the LM741operational amplifier build a voltage amplifier with the voltage gain of  |A V | = 500 v/v ± = 20%. Measure all necessary parameters of the amplifier (as per deliver

Explain the operation of 8279, Explain the operation of 8279.  Explain the ...

Explain the operation of 8279.  Explain the following terms: (i)  N key Roll over. (ii)  Key board debounce. (iii)  FIFO RAM. Ans The 8279 microprocessor i

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd