More volume problems, Mathematics

Assignment Help:

More Volume Problems : Under this section we are decide to take a look at several more volume problems. Though, the problems we see now will not be solids of revolution while we looked at in the earlier two sections. There are various solids out there which cannot be produced as solids of revolution, or else at least not simply and therefore we require taking a look at how to do several of these problems.

Here, having said that such will not be solids of revolutions they will even be worked in pretty much similar way.  For each solid we will require to find out the cross-sectional region, either A(x) or A(y), and they utilize the formulas we used in the earlier two sections,

1299_More Volume Problems.png

The "hard" part of such problems will be finding what the cross-sectional area for all solids is. All problems will differ and therefore each cross-sectional region will be found through various means.

Well before we proceed with any illustrations we require acknowledging that the integrals under this section might look a small tricky at first. There are very few problems.  All of the illustrations into this section are going to be more common derivation of volume formulas for specific solids. For this we'll be working with things as circles of radius r and we will not be providing an exact value of r and we will have heights of h in place of specific heights and so on.

All the letters into the integrals are going to create the integrals look a small tricky, although all you must remember is that the r's and the h's are only letters being used to characterize a fixed quantity for the problem, that is this is a constant. Thus when we integrate we only require worrying about the letter in the differential as i.e. the variable we are really integrate regarding. All other letters in the integral must be thought of as constants. Just think about what you would do if the r was a 2 or the h was a 3 for illustration, if you have trouble doing that.

Let's begin with a simple illustration which we don't really need to do an integral which will exemplify how these problems work in common and will find us used to seeing numerous letters in integrals.


Related Discussions:- More volume problems

Describe the sample of exponents , Describe the Sample of Exponents ? I...

Describe the Sample of Exponents ? Imagine, for example, that you are the P.E. coach at your school, and you need to divide one of your classes into teams. Your team has 45 stu

Evaluate the area of circle, If the radius of a sphere is doubled, the surf...

If the radius of a sphere is doubled, the surface area is a. multiplied by 4. b. multiplied by 2. c. multiplied by 3. d. multiplied by 8. a. The formula for the surf

Define multiplication rule in probability, Q. Define Multiplication Rule in...

Q. Define Multiplication Rule in probability? Ans. A family has two girls, Ann and Barb, and three boys, Carl, David and Earl, in it. In how many ways can the mother pick

Volumes of solids of revolution -method of cylinders, Volumes of Solids of ...

Volumes of Solids of Revolution / Method of Cylinders In the previous section we started looking at determine volumes of solids of revolution.  In this section we took cross se

What is the least number of students needed in a class, What is the least n...

What is the least number of students needed in a class to be sure that at least 6 will receive similar grade if there are five probable grades A, B,C, D and F?  Ans: Let us re

Initial value problems, Write a Matlab function MyIVP that solves an initia...

Write a Matlab function MyIVP that solves an initial-value problem (IVP) for a system of ordinary differential equations (ODEs) of the form x ?(t) = f (t, x(t)), where f : R × Rn ?

Solve the subsequent lp problem, Solve the subsequent LP problem graphicall...

Solve the subsequent LP problem graphically through enumerating the corner points. MAX:              3X1 + 4X2 Subject to:    X1   12                     X2    10

Tangents with polar coordinates - parametric equations, Tangents with Polar...

Tangents with Polar Coordinates Here we now require to discuss some calculus topics in terms of polar coordinates. We will begin with finding tangent lines to polar curves.

How many cubic yards of concrete are required, A concrete retaining wall is...

A concrete retaining wall is 120 feet long with ends shaped as given. How many cubic yards of concrete are required to construct the wall? a. 217.8 yd 3 b. 5,880 yd 3

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd