More volume problems, Mathematics

Assignment Help:

More Volume Problems : Under this section we are decide to take a look at several more volume problems. Though, the problems we see now will not be solids of revolution while we looked at in the earlier two sections. There are various solids out there which cannot be produced as solids of revolution, or else at least not simply and therefore we require taking a look at how to do several of these problems.

Here, having said that such will not be solids of revolutions they will even be worked in pretty much similar way.  For each solid we will require to find out the cross-sectional region, either A(x) or A(y), and they utilize the formulas we used in the earlier two sections,

1299_More Volume Problems.png

The "hard" part of such problems will be finding what the cross-sectional area for all solids is. All problems will differ and therefore each cross-sectional region will be found through various means.

Well before we proceed with any illustrations we require acknowledging that the integrals under this section might look a small tricky at first. There are very few problems.  All of the illustrations into this section are going to be more common derivation of volume formulas for specific solids. For this we'll be working with things as circles of radius r and we will not be providing an exact value of r and we will have heights of h in place of specific heights and so on.

All the letters into the integrals are going to create the integrals look a small tricky, although all you must remember is that the r's and the h's are only letters being used to characterize a fixed quantity for the problem, that is this is a constant. Thus when we integrate we only require worrying about the letter in the differential as i.e. the variable we are really integrate regarding. All other letters in the integral must be thought of as constants. Just think about what you would do if the r was a 2 or the h was a 3 for illustration, if you have trouble doing that.

Let's begin with a simple illustration which we don't really need to do an integral which will exemplify how these problems work in common and will find us used to seeing numerous letters in integrals.


Related Discussions:- More volume problems

General solution to a differential equation, The general solution to a diff...

The general solution to a differential equation is the most common form which the solution can take and does not take any initial conditions in account. Illustration 5: y(t) =

Two train leave show many hours will take before trains pass, Two trains le...

Two trains leave two different cities 1,029 miles apart and head directly toward every other on parallel tracks. If one train is traveling at 45 miles per hour and the other at 53

Find the value of p and q for which the system of equations, Find the value...

Find the value of p and q for which the system of equations represent coincident lines 2x +3y = 7, (p+q+1)x +(p+2q+2)y = 4(p+q)+1 Ans: a 1  = 2, b 1 = 3, c 1 = 7 a 2  =

Math, The Timbuktu post office has only 3 cents and 7 cents stamps having r...

The Timbuktu post office has only 3 cents and 7 cents stamps having run out of all other denominations. What are the six amounts of postage that cannot be created? How do you know

Liniar Algebra, Assume A and B are symmetric. Explain why the following are...

Assume A and B are symmetric. Explain why the following are symmetric or not. 1) A^2 - B^2 2) (A+B)(A-B) 3) ABA 4) ABAB 5) (A^2)B

Define combined functions, Q. Define Combined Functions? Ans. We a...

Q. Define Combined Functions? Ans. We are often interested in functions which combine a trigonometric function with another type of function.  For example, y = x + sinx wi

Ratio, There are only Chinese and Malay pupils in a hall.The ratio of the n...

There are only Chinese and Malay pupils in a hall.The ratio of the number of boys to the number of girls is 2:3.The ratio of the number of Chinese boys to the number of Malay boys

Strategy -game theory, STRATEGY It refers to a total pattern of cho...

STRATEGY It refers to a total pattern of choices employed by any player. Strategy could be pure or a mixed one In a pure strategy, player X will play one row all of the

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd