More volume problems, Mathematics

Assignment Help:

More Volume Problems : Under this section we are decide to take a look at several more volume problems. Though, the problems we see now will not be solids of revolution while we looked at in the earlier two sections. There are various solids out there which cannot be produced as solids of revolution, or else at least not simply and therefore we require taking a look at how to do several of these problems.

Here, having said that such will not be solids of revolutions they will even be worked in pretty much similar way.  For each solid we will require to find out the cross-sectional region, either A(x) or A(y), and they utilize the formulas we used in the earlier two sections,

1299_More Volume Problems.png

The "hard" part of such problems will be finding what the cross-sectional area for all solids is. All problems will differ and therefore each cross-sectional region will be found through various means.

Well before we proceed with any illustrations we require acknowledging that the integrals under this section might look a small tricky at first. There are very few problems.  All of the illustrations into this section are going to be more common derivation of volume formulas for specific solids. For this we'll be working with things as circles of radius r and we will not be providing an exact value of r and we will have heights of h in place of specific heights and so on.

All the letters into the integrals are going to create the integrals look a small tricky, although all you must remember is that the r's and the h's are only letters being used to characterize a fixed quantity for the problem, that is this is a constant. Thus when we integrate we only require worrying about the letter in the differential as i.e. the variable we are really integrate regarding. All other letters in the integral must be thought of as constants. Just think about what you would do if the r was a 2 or the h was a 3 for illustration, if you have trouble doing that.

Let's begin with a simple illustration which we don't really need to do an integral which will exemplify how these problems work in common and will find us used to seeing numerous letters in integrals.


Related Discussions:- More volume problems

Examples on log rules, Examples on Log rules: Example:      Calculate...

Examples on Log rules: Example:      Calculate (1/3)log 10   2. Solution: log b n√A = log b A 1/n = (1/n)log b A (1/3)log 10 2 = log 10 3 √2 = log 10 1.

Definite integral, Definite Integral : Given a function f ( x ) which is c...

Definite Integral : Given a function f ( x ) which is continuous on the interval [a,b] we divide the interval in n subintervals of equivalent width, Δx , and from each interval se

value of integration , what is the value of integration limit n-> infinity...

what is the value of integration limit n-> infinity [n!/n to the power n]to the power 1/n Solution)  limit n-->inf.    [1 + (n!-n^n)/n^n]^1/n = e^ limit n-->inf.    {(n!-n^n)

Show that positive integers is divisible by 6, Show that the product of 3 c...

Show that the product of 3 consecutive positive integers is divisible by 6. Ans: n,n+1,n+2 be three consecutive positive integers We know that n is of the form 3q, 3q +1

Statistics, If a mean score is 89 with a standard deviation of 8 points. Wh...

If a mean score is 89 with a standard deviation of 8 points. What is the least score you can make and be in the top 20%?

Calculate time interval, From top of a tower a stone is thrown up and it re...

From top of a tower a stone is thrown up and it reaches the ground in time t1. A second stone is thrown down with the same speed and it reaches the ground in t2. A third stone is r

Geometry, calculate the area of a trapezoid with height 8cm base 18cm and 9...

calculate the area of a trapezoid with height 8cm base 18cm and 9cm

Evaluate the slope of the tangent line, Evaluate the given limits, showing ...

Evaluate the given limits, showing all working: Using first principles (i.e. the method used in Example 1, Washington 2009, Using definition to find derivative ) find the

Properties of the indefinite integral, Properties of the Indefinite Integra...

Properties of the Indefinite Integral 1.  ∫ k f ( x ) dx = k ∫ f ( x ) dx where k refer for any number.  Thus, we can factor multiplicative constants out of indefinite integral

Statistics., the mean and standarddeviation of set a is -x ans s respective...

the mean and standarddeviation of set a is -x ans s respectively.find the mean and standard deviation of set b

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd