More volume problems, Mathematics

Assignment Help:

More Volume Problems : Under this section we are decide to take a look at several more volume problems. Though, the problems we see now will not be solids of revolution while we looked at in the earlier two sections. There are various solids out there which cannot be produced as solids of revolution, or else at least not simply and therefore we require taking a look at how to do several of these problems.

Here, having said that such will not be solids of revolutions they will even be worked in pretty much similar way.  For each solid we will require to find out the cross-sectional region, either A(x) or A(y), and they utilize the formulas we used in the earlier two sections,

1299_More Volume Problems.png

The "hard" part of such problems will be finding what the cross-sectional area for all solids is. All problems will differ and therefore each cross-sectional region will be found through various means.

Well before we proceed with any illustrations we require acknowledging that the integrals under this section might look a small tricky at first. There are very few problems.  All of the illustrations into this section are going to be more common derivation of volume formulas for specific solids. For this we'll be working with things as circles of radius r and we will not be providing an exact value of r and we will have heights of h in place of specific heights and so on.

All the letters into the integrals are going to create the integrals look a small tricky, although all you must remember is that the r's and the h's are only letters being used to characterize a fixed quantity for the problem, that is this is a constant. Thus when we integrate we only require worrying about the letter in the differential as i.e. the variable we are really integrate regarding. All other letters in the integral must be thought of as constants. Just think about what you would do if the r was a 2 or the h was a 3 for illustration, if you have trouble doing that.

Let's begin with a simple illustration which we don't really need to do an integral which will exemplify how these problems work in common and will find us used to seeing numerous letters in integrals.


Related Discussions:- More volume problems

Evaluate of the largest angle, The measures of the angles of a triangle are...

The measures of the angles of a triangle are in the ratio of 3:4:5. Evaluate of the largest angle. a. 75° b. 37.5° c. 45° d. 60° a. The addition of the measures of t

Equations with finding principals, I need help solving principal equations ...

I need help solving principal equations where interest,rate,and time are given.

Find x if one ball is drawn at random from the box, A box contains 12 balls...

A box contains 12 balls out of which x are black .if one ball is drawn at random from the box  what is the probability that it will be a black ball ? If 6 more black balls are   pu

Calculate the height of the tunnel and the perimeter, The adjoining figure...

The adjoining figure shows the cross-section of a railway tunnel. The radius of the tunnel is 3.5m (i.e., OA=3.5m) and ∠AOB=90 o . Calculate : i.       the height of the

What is the continuously compounded forward rate, At time t an investor s...

At time t an investor shorts a $1 face value zero coupon bond that matures at time T = t and uses the entire proceeds to purchase a zero coupon bond that matures at time

Solving equations and/or word problems for the unknowns, With their fence i...

With their fence in place, Zack and Clint set to work landscaping yards. Since Clint did the majority of the actual landscaping and planting, he worked on the average more hours t

Vector analysis ...gradient, A body is constrained to move in a path y = 1+...

A body is constrained to move in a path y = 1+ x^2 and its motion is resisted by friction. The co-efficient of friction is 0.3. The body is acted on by a force F directed towards t

Invariant lines under transformation, What lines are invariant under the tr...

What lines are invariant under the transformation [(103)(01-4)(001)]? I do not know where to even begin to solve this. Please help!!

Ms. Smith, How can I use the I=Prt formula to get the interest for this pro...

How can I use the I=Prt formula to get the interest for this problem? A car dealer sells me a car for $16450 with $3,290 down and $339.97 monthly payments for 48 months. What is

Find out the surface area of the solid - parametric curve, Find out the sur...

Find out the surface area of the solid acquired by rotating the following parametric curve about the x-axis. x = cos 3 θ y = sin 3 θ  0 ≤ θ ≤ ?/2 Solution We wil

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd