More volume problems, Mathematics

Assignment Help:

More Volume Problems : Under this section we are decide to take a look at several more volume problems. Though, the problems we see now will not be solids of revolution while we looked at in the earlier two sections. There are various solids out there which cannot be produced as solids of revolution, or else at least not simply and therefore we require taking a look at how to do several of these problems.

Here, having said that such will not be solids of revolutions they will even be worked in pretty much similar way.  For each solid we will require to find out the cross-sectional region, either A(x) or A(y), and they utilize the formulas we used in the earlier two sections,

1299_More Volume Problems.png

The "hard" part of such problems will be finding what the cross-sectional area for all solids is. All problems will differ and therefore each cross-sectional region will be found through various means.

Well before we proceed with any illustrations we require acknowledging that the integrals under this section might look a small tricky at first. There are very few problems.  All of the illustrations into this section are going to be more common derivation of volume formulas for specific solids. For this we'll be working with things as circles of radius r and we will not be providing an exact value of r and we will have heights of h in place of specific heights and so on.

All the letters into the integrals are going to create the integrals look a small tricky, although all you must remember is that the r's and the h's are only letters being used to characterize a fixed quantity for the problem, that is this is a constant. Thus when we integrate we only require worrying about the letter in the differential as i.e. the variable we are really integrate regarding. All other letters in the integral must be thought of as constants. Just think about what you would do if the r was a 2 or the h was a 3 for illustration, if you have trouble doing that.

Let's begin with a simple illustration which we don't really need to do an integral which will exemplify how these problems work in common and will find us used to seeing numerous letters in integrals.


Related Discussions:- More volume problems

Explain basic geometric concepts, Explain Basic Geometric Concepts ? P...

Explain Basic Geometric Concepts ? Points, lines, and planes are the most fundamental concepts in the study of geometry. Points A point has no length, width or heig

Level curves or contour curves - three dimensional space, Level Curves or C...

Level Curves or Contour Curves Another topic that we should look at is that of level curves or also known as contour curves. The level curves of the function z = f (x, y) are t

Variance, Variance Consider the example of investment opportunities. Th...

Variance Consider the example of investment opportunities. The expected gains were Rs.114 and Rs.81 respectively. The fact is that an investor also looks at the dispersion befo

How many ways are there to seat these children, Question: (a) Suppose ...

Question: (a) Suppose that a cookie shop has four different kinds of cookies. Assuming that only the type of cookie, and not the individual cookies or the order in which they

Determine an actual explicit solution, Determine an actual explicit solutio...

Determine an actual explicit solution to y′ = t/y; y(2) = -1. Solution : We already identify by the previous illustration that an implicit solution to this IVP is y 2 = t 2 -

Probability, A man is known to speak truth 3 out of 4 times.He throws adi...

A man is known to speak truth 3 out of 4 times.He throws adie and reports it is a six. Find the probability that it is actually a six. Solution)  we can get a six if a man s

Product rule (f g)' = f ' g + f g', Product Rule: (f g)′ = f ′ g + f g′ ...

Product Rule: (f g)′ = f ′ g + f g′ As with above the Power Rule, so the Product Rule can be proved either through using the definition of the derivative or this can be proved

Determine the line parallel or perpendicular, Determine if the line that pa...

Determine if the line that passes through the points ( -2, -10) and (6, -1) is parallel, perpendicular or neither to the line specified  by 7 y - 9 x = 15 . Solution Togive

Differential equations, solve the differential equation 8yk+2-6yk+1+yk=9 ,k...

solve the differential equation 8yk+2-6yk+1+yk=9 ,k=0 given that Y0=1 and y1=3/2

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd