More optimization problems, Mathematics

Assignment Help:

More Optimization Problems

Example   A window is being built in which the bottom is rectangle and the top is a semicircle. If there framing materials is 12 meters what have to the dimensions of the window be to let in the most light?

Solution

Let's ask this question again in somewhat easier to understand terms.  We desire a window in the shape defined above to contain a maximum area (and therefore let in the most light) and contain a perimeter of 12 m (since we have 12 m of framing material).  Little bit simple to understand in those terms.

Following is a sketch of the window.  h is height of the rectangular portion and since the semicircle is on top and width of the rectangular portion at 2r.

1269_Optimization1.png

The perimeter (our constraint) refers for the lengths of the three sides onto the rectangular portion as well as half the circumference of a circle of radius r. The area (what we desire to maximize) is the area of the rectangle as well as half the area of a circle of radius r.  Following are the equations we'll be working with in this example.

Maximize : A = 2hr +  (½)∏ r 2

Constraint : 12 = 2h + 2r + ∏ r

In this case we'll solve out the constraint for h & plug that into the area equation.

h = 6 - r - 1/2 ∏ r ⇒  A (r )= 2r (6 - r - (1/2) ∏ r) + 1/2 ∏ r 2  =12r - 2r2 - 1/2 ∏ r 2 

The first & second derivatives are,

A′ ( r ) = 12 - r ( 4 + ∏ )                   A′′ ( r ) = -4 - ∏

We can illustrates that the only critical point is,

                                      r = 12 /4 + ∏

We can also illustrate that the second derivative is always -ve (actually it's a constant) and so we can think that the maximum area should occur at this point. Therefore, for the maximum area the semicircle on top should have a radius of 1.6803 and the rectangle should have the dimensions 3.3606 x 1.6803 (h x 2r).


Related Discussions:- More optimization problems

Loan amortisation problem, On 30 June 2012 Bill purchase a home by taking o...

On 30 June 2012 Bill purchase a home by taking out a 30 year mortgage of $600,000 at 6% interest per annum, compounded months. Repayments are made at the end of each month. (a) Cal

Chp 8 Study, Center and Radius 1)(x+2)^2-(y-3)^2=4

Center and Radius 1)(x+2)^2-(y-3)^2=4

Trigonometry, If a+b+c = 3a , then cotB/2 cotC/2 is equal to

If a+b+c = 3a , then cotB/2 cotC/2 is equal to

Show that 8 - 10 + 21= 0, If A, B and P are the points (-4, 3), (0, -2) and...

If A, B and P are the points (-4, 3), (0, -2) and (α,β) respectively and P is equidistant from A and B, show that 8α - 10β + 21= 0. Ans :   AP = PB ⇒ AP 2 = PB 2 (∝ + 4) 2

Determine the distance, Two planes leave the airport at the similar time. M...

Two planes leave the airport at the similar time. Minutes later, plane A is 70 miles due north of the airport and plane B is 168 miles due east of the airport. Determine the distan

Trigonometry, Prove: 1/cos2A+sin2A/cos2A=sinA+cosA/cosA-sinA

Prove: 1/cos2A+sin2A/cos2A=sinA+cosA/cosA-sinA

Geometry, Determine the coordinates of the point equidistant from Salt Lake...

Determine the coordinates of the point equidistant from Salt Lake City and Helena

How many permutations of the letters a b c d e f g h, How many permutations...

How many permutations of the letters A B C D E F G H consist of string DEF?    Ans: It is the dilemma of finding number of words that can be formed along with the given 8 lette

Eometry constructions, construct an isosceles triangle ABC when:base BC is ...

construct an isosceles triangle ABC when:base BC is 6.2 and altitude a.a

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd