More optimization problems, Mathematics

Assignment Help:

More Optimization Problems

Example   A window is being built in which the bottom is rectangle and the top is a semicircle. If there framing materials is 12 meters what have to the dimensions of the window be to let in the most light?

Solution

Let's ask this question again in somewhat easier to understand terms.  We desire a window in the shape defined above to contain a maximum area (and therefore let in the most light) and contain a perimeter of 12 m (since we have 12 m of framing material).  Little bit simple to understand in those terms.

Following is a sketch of the window.  h is height of the rectangular portion and since the semicircle is on top and width of the rectangular portion at 2r.

1269_Optimization1.png

The perimeter (our constraint) refers for the lengths of the three sides onto the rectangular portion as well as half the circumference of a circle of radius r. The area (what we desire to maximize) is the area of the rectangle as well as half the area of a circle of radius r.  Following are the equations we'll be working with in this example.

Maximize : A = 2hr +  (½)∏ r 2

Constraint : 12 = 2h + 2r + ∏ r

In this case we'll solve out the constraint for h & plug that into the area equation.

h = 6 - r - 1/2 ∏ r ⇒  A (r )= 2r (6 - r - (1/2) ∏ r) + 1/2 ∏ r 2  =12r - 2r2 - 1/2 ∏ r 2 

The first & second derivatives are,

A′ ( r ) = 12 - r ( 4 + ∏ )                   A′′ ( r ) = -4 - ∏

We can illustrates that the only critical point is,

                                      r = 12 /4 + ∏

We can also illustrate that the second derivative is always -ve (actually it's a constant) and so we can think that the maximum area should occur at this point. Therefore, for the maximum area the semicircle on top should have a radius of 1.6803 and the rectangle should have the dimensions 3.3606 x 1.6803 (h x 2r).


Related Discussions:- More optimization problems

Carrot juice, 1. His favorite current carrot drink contain 40%. but h eneed...

1. His favorite current carrot drink contain 40%. but h eneeds add to 80 quarts wife brought his perfect drink mix.

Determine the conditional probability, Consider a class of 55 students. The...

Consider a class of 55 students. The student names are placed in a hat and 3 names are randomly drawn without replacement. a) If the first person drawn was named the class presi

Graphing linear equtions, Determine whether each equation is a linear equat...

Determine whether each equation is a linear equation. If yes, write the equation in standard form. y=2x+5

Binomial mathematical properties, Binomial Mathematical Properties 1. ...

Binomial Mathematical Properties 1. The expected or mean value = n × p = np Whereas; n = Sample Size p = Probability of success 2. The variance = npq Whereas; q =

Extrema- minimum and maximum values, Extrema : Note as well that while we ...

Extrema : Note as well that while we say an "open interval around x = c " we mean that we can discover some interval ( a, b ) , not involving the endpoints, such that a Also,

Break even point, what is break even point and how can it helps managers to...

what is break even point and how can it helps managers to make decisions?

Solve the recurrence relation, Solve the recurrence relation T ...

Solve the recurrence relation T (K) = 2T (K-1), T (0) = 1 Ans: The following equation can be written in the subsequent form:  t n - 2t n-1 =  0  Here now su

Rarrrrrrrrrr, i need help in writing about a magic car?..

i need help in writing about a magic car?..

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd