More optimization problems, Mathematics

Assignment Help:

More Optimization Problems

Example   A window is being built in which the bottom is rectangle and the top is a semicircle. If there framing materials is 12 meters what have to the dimensions of the window be to let in the most light?

Solution

Let's ask this question again in somewhat easier to understand terms.  We desire a window in the shape defined above to contain a maximum area (and therefore let in the most light) and contain a perimeter of 12 m (since we have 12 m of framing material).  Little bit simple to understand in those terms.

Following is a sketch of the window.  h is height of the rectangular portion and since the semicircle is on top and width of the rectangular portion at 2r.

1269_Optimization1.png

The perimeter (our constraint) refers for the lengths of the three sides onto the rectangular portion as well as half the circumference of a circle of radius r. The area (what we desire to maximize) is the area of the rectangle as well as half the area of a circle of radius r.  Following are the equations we'll be working with in this example.

Maximize : A = 2hr +  (½)∏ r 2

Constraint : 12 = 2h + 2r + ∏ r

In this case we'll solve out the constraint for h & plug that into the area equation.

h = 6 - r - 1/2 ∏ r ⇒  A (r )= 2r (6 - r - (1/2) ∏ r) + 1/2 ∏ r 2  =12r - 2r2 - 1/2 ∏ r 2 

The first & second derivatives are,

A′ ( r ) = 12 - r ( 4 + ∏ )                   A′′ ( r ) = -4 - ∏

We can illustrates that the only critical point is,

                                      r = 12 /4 + ∏

We can also illustrate that the second derivative is always -ve (actually it's a constant) and so we can think that the maximum area should occur at this point. Therefore, for the maximum area the semicircle on top should have a radius of 1.6803 and the rectangle should have the dimensions 3.3606 x 1.6803 (h x 2r).


Related Discussions:- More optimization problems

Write prim's algorithm, Write Prim's Algorithm.   Ans: Prim's algorithm...

Write Prim's Algorithm.   Ans: Prim's algorithm to find out a minimum spanning tree from a weighted graph in step by step form is given below.  Let G = (V, E) be graph and S

How did rousseau resolve the conflict, How did Rousseau resolve the conflic...

How did Rousseau resolve the conflict between the rights of the individual and the responsibilities of government (the state)? How did the ideas about universal education and socia

Piecewise, x=±4, if -2 = y =0 x=±2, if -2 = y = 0

x=±4, if -2 = y =0 x=±2, if -2 = y = 0

Math, what is the changen intemperature bewtween the highest and the lowest...

what is the changen intemperature bewtween the highest and the lowest temperture high-40c low-0c

Intrgers, how to evaluate the sums

how to evaluate the sums

How much did he have in savings at the starting, Bill spent 50% of his savi...

Bill spent 50% of his savings on school supplies, and then he spent 50% of what was left on lunch. If he had $6 left after lunch, how much did he have in savings at the starting?

Find the constant rate of 0.01 , Two people are 50 feet separately.  One of...

Two people are 50 feet separately.  One of them begin walking north at rate so that the angle illustrated in the diagram below is changing at constant rate of 0.01 rad/min. At what

Evaluate the perimeter of the plot of land, Evaluate the perimeter of the p...

Evaluate the perimeter of the plot of land. a. 260 m b. 340 m c. 360 m d. 320 m To evaluate the perimeter, we must know the length of all sides. According to the dia

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd