More optimization problems, Mathematics

Assignment Help:

More Optimization Problems

Example   A window is being built in which the bottom is rectangle and the top is a semicircle. If there framing materials is 12 meters what have to the dimensions of the window be to let in the most light?

Solution

Let's ask this question again in somewhat easier to understand terms.  We desire a window in the shape defined above to contain a maximum area (and therefore let in the most light) and contain a perimeter of 12 m (since we have 12 m of framing material).  Little bit simple to understand in those terms.

Following is a sketch of the window.  h is height of the rectangular portion and since the semicircle is on top and width of the rectangular portion at 2r.

1269_Optimization1.png

The perimeter (our constraint) refers for the lengths of the three sides onto the rectangular portion as well as half the circumference of a circle of radius r. The area (what we desire to maximize) is the area of the rectangle as well as half the area of a circle of radius r.  Following are the equations we'll be working with in this example.

Maximize : A = 2hr +  (½)∏ r 2

Constraint : 12 = 2h + 2r + ∏ r

In this case we'll solve out the constraint for h & plug that into the area equation.

h = 6 - r - 1/2 ∏ r ⇒  A (r )= 2r (6 - r - (1/2) ∏ r) + 1/2 ∏ r 2  =12r - 2r2 - 1/2 ∏ r 2 

The first & second derivatives are,

A′ ( r ) = 12 - r ( 4 + ∏ )                   A′′ ( r ) = -4 - ∏

We can illustrates that the only critical point is,

                                      r = 12 /4 + ∏

We can also illustrate that the second derivative is always -ve (actually it's a constant) and so we can think that the maximum area should occur at this point. Therefore, for the maximum area the semicircle on top should have a radius of 1.6803 and the rectangle should have the dimensions 3.3606 x 1.6803 (h x 2r).


Related Discussions:- More optimization problems

Melisa and jennifer threw a fiftieth how much is a 20% tip, Melisa and Jenn...

Melisa and Jennifer threw a fiftieth birthday party for their father at a local restaurant. While the bill came, Melisa added a 15% tip of $42. Jennifer said in which the service w

Use the power function to find derivative, Given, y = f(x) = 2 x 3 - 3x 2 ...

Given, y = f(x) = 2 x 3 - 3x 2 + 4x +5 a)  Use the Power function to find derivative of the function. b)  Find the value of the derivative at x = 4.

Surface area and volume, a child prepares a poster to save energy on a squa...

a child prepares a poster to save energy on a square sheet whose each side measures 50 cm . At each corner she draws a quadrant of radius 5 cm and the centre of a circle of diamete

Calculate the equation, Problem1: Find the general solution on -π/2 Dy/...

Problem1: Find the general solution on -π/2 Dy/dx +(tan x)y =(sin 2 x)y 4

Euler equations, Euler Equations - Series Solutions to Differential Equ...

Euler Equations - Series Solutions to Differential Equations In this section we require to look for solutions to, ax 2 y′′ + bxy′ + cy = 0 around x0  = 0. These ki

Geometry, in right angle triangle BAC.

in right angle triangle BAC.

Estimate the distance to this star, To find the distance to nearby stars, t...

To find the distance to nearby stars, the method of parallax is used. The idea is to find a triangle with the star at one vertex and with a base as large as possible. To do this, t

Evaluating functions, Next we have to talk about evaluating functions.  Eva...

Next we have to talk about evaluating functions.  Evaluating a function is in fact nothing more than asking what its value is for particular values of x. Another way of looking at

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd