More optimization problems, Mathematics

Assignment Help:

More Optimization Problems

Example   A window is being built in which the bottom is rectangle and the top is a semicircle. If there framing materials is 12 meters what have to the dimensions of the window be to let in the most light?

Solution

Let's ask this question again in somewhat easier to understand terms.  We desire a window in the shape defined above to contain a maximum area (and therefore let in the most light) and contain a perimeter of 12 m (since we have 12 m of framing material).  Little bit simple to understand in those terms.

Following is a sketch of the window.  h is height of the rectangular portion and since the semicircle is on top and width of the rectangular portion at 2r.

1269_Optimization1.png

The perimeter (our constraint) refers for the lengths of the three sides onto the rectangular portion as well as half the circumference of a circle of radius r. The area (what we desire to maximize) is the area of the rectangle as well as half the area of a circle of radius r.  Following are the equations we'll be working with in this example.

Maximize : A = 2hr +  (½)∏ r 2

Constraint : 12 = 2h + 2r + ∏ r

In this case we'll solve out the constraint for h & plug that into the area equation.

h = 6 - r - 1/2 ∏ r ⇒  A (r )= 2r (6 - r - (1/2) ∏ r) + 1/2 ∏ r 2  =12r - 2r2 - 1/2 ∏ r 2 

The first & second derivatives are,

A′ ( r ) = 12 - r ( 4 + ∏ )                   A′′ ( r ) = -4 - ∏

We can illustrates that the only critical point is,

                                      r = 12 /4 + ∏

We can also illustrate that the second derivative is always -ve (actually it's a constant) and so we can think that the maximum area should occur at this point. Therefore, for the maximum area the semicircle on top should have a radius of 1.6803 and the rectangle should have the dimensions 3.3606 x 1.6803 (h x 2r).


Related Discussions:- More optimization problems

The definite integral- area under a curve, The Definite Integ...

The Definite Integral Area under a Curve If there exists an irregularly shaped curve, y = f(x) then there is no formula to find out

Combining like terms, i don''t understand what my teacher when she talks ab...

i don''t understand what my teacher when she talks about when she talks about cosecutive integers etc... so can u help me???

Product rule (f g)' = f ' g + f g', Product Rule: (f g)′ = f ′ g + f g′ ...

Product Rule: (f g)′ = f ′ g + f g′ As with above the Power Rule, so the Product Rule can be proved either through using the definition of the derivative or this can be proved

Theory of quadratic equations.., solve the following simultaneous equations...

solve the following simultaneous equations x+y=a+b ; a/x_b/y

Trignometry, Sin3x ? Solution) THE FORMULA IS RIGHT ,SO sin3x=3sin...

Sin3x ? Solution) THE FORMULA IS RIGHT ,SO sin3x=3sinx-4sin 3 x

.fractions, what is the difference between North America''s part of the tot...

what is the difference between North America''s part of the total population and Africa''s part

Find area of y = 2 x2 + 10 and y = 4 x + 16, Find out the area of the regio...

Find out the area of the region bounded by y = 2 x 2 + 10 and y = 4 x + 16 . Solution In this case the intersection points (that we'll required eventually) are not going t

Volume, #given that the perimeter of the buildig is 108m and the area of th...

#given that the perimeter of the buildig is 108m and the area of the floor is 138m, find the volume of the screed in m3 if it is 30mm thick

Integration, It is known that a radioactive material decays at a rate propo...

It is known that a radioactive material decays at a rate proportional to the amount present.If after a period of 12 years,a 2g piece of radium weighs 1.99g.How long will it be befo

Construct a venn diagram, In a survey of 85 people this is found that 31 wa...

In a survey of 85 people this is found that 31 want to drink milk 43 like coffee and 39 wish tea.  As well 13 want both milk and tea, 15 like milk & coffee, 20 like tea and coffee

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd