More optimization problems, Mathematics

Assignment Help:

More Optimization Problems

Example   A window is being built in which the bottom is rectangle and the top is a semicircle. If there framing materials is 12 meters what have to the dimensions of the window be to let in the most light?

Solution

Let's ask this question again in somewhat easier to understand terms.  We desire a window in the shape defined above to contain a maximum area (and therefore let in the most light) and contain a perimeter of 12 m (since we have 12 m of framing material).  Little bit simple to understand in those terms.

Following is a sketch of the window.  h is height of the rectangular portion and since the semicircle is on top and width of the rectangular portion at 2r.

1269_Optimization1.png

The perimeter (our constraint) refers for the lengths of the three sides onto the rectangular portion as well as half the circumference of a circle of radius r. The area (what we desire to maximize) is the area of the rectangle as well as half the area of a circle of radius r.  Following are the equations we'll be working with in this example.

Maximize : A = 2hr +  (½)∏ r 2

Constraint : 12 = 2h + 2r + ∏ r

In this case we'll solve out the constraint for h & plug that into the area equation.

h = 6 - r - 1/2 ∏ r ⇒  A (r )= 2r (6 - r - (1/2) ∏ r) + 1/2 ∏ r 2  =12r - 2r2 - 1/2 ∏ r 2 

The first & second derivatives are,

A′ ( r ) = 12 - r ( 4 + ∏ )                   A′′ ( r ) = -4 - ∏

We can illustrates that the only critical point is,

                                      r = 12 /4 + ∏

We can also illustrate that the second derivative is always -ve (actually it's a constant) and so we can think that the maximum area should occur at this point. Therefore, for the maximum area the semicircle on top should have a radius of 1.6803 and the rectangle should have the dimensions 3.3606 x 1.6803 (h x 2r).


Related Discussions:- More optimization problems

Fractions, A recipe calls for 2 1/4 teaspoons of salt for every 1 1/8 teasp...

A recipe calls for 2 1/4 teaspoons of salt for every 1 1/8 teaspoons of black pepper used. How many teaspoons of salt are needed for each teaspoon of pepper used ?

Matrix, find the matrix of the linear transformations T:R2->R2 defined by T...

find the matrix of the linear transformations T:R2->R2 defined by T(x,y,z)=(x+2y,x-3z).

Applications of derivatives, Applications of derivatives : At last, let's ...

Applications of derivatives : At last, let's not forget about our applications of derivatives. Example    Assume that the amount of air in a balloon at any time t is specified

Geography, How do you find the maxima or minima on a parabolic graph?

How do you find the maxima or minima on a parabolic graph?

Find the normal to any point on the surface of convex lenses, Draw a tangen...

Draw a tangent on the lens where you want to find normal .Then line perpendicular to tangent gives normal at that point.

Free Assignment Test Online, Well, my uncle want me to tutor him in mathema...

Well, my uncle want me to tutor him in mathematics. But, the problem is I don''t know what he already knows about math. It for his Compass Test when he go back to school in the spr

Application of statistics-human resource management, Human resource managem...

Human resource management Statistics may be utilized in efficient employ of human resources for example we may provide questionnaires to workers to find out where the manageme

Quadric surfaces, identify 4 sketch the quadric surfaces

identify 4 sketch the quadric surfaces

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd