More optimization problems, Mathematics

Assignment Help:

More Optimization Problems

Example   A window is being built in which the bottom is rectangle and the top is a semicircle. If there framing materials is 12 meters what have to the dimensions of the window be to let in the most light?

Solution

Let's ask this question again in somewhat easier to understand terms.  We desire a window in the shape defined above to contain a maximum area (and therefore let in the most light) and contain a perimeter of 12 m (since we have 12 m of framing material).  Little bit simple to understand in those terms.

Following is a sketch of the window.  h is height of the rectangular portion and since the semicircle is on top and width of the rectangular portion at 2r.

1269_Optimization1.png

The perimeter (our constraint) refers for the lengths of the three sides onto the rectangular portion as well as half the circumference of a circle of radius r. The area (what we desire to maximize) is the area of the rectangle as well as half the area of a circle of radius r.  Following are the equations we'll be working with in this example.

Maximize : A = 2hr +  (½)∏ r 2

Constraint : 12 = 2h + 2r + ∏ r

In this case we'll solve out the constraint for h & plug that into the area equation.

h = 6 - r - 1/2 ∏ r ⇒  A (r )= 2r (6 - r - (1/2) ∏ r) + 1/2 ∏ r 2  =12r - 2r2 - 1/2 ∏ r 2 

The first & second derivatives are,

A′ ( r ) = 12 - r ( 4 + ∏ )                   A′′ ( r ) = -4 - ∏

We can illustrates that the only critical point is,

                                      r = 12 /4 + ∏

We can also illustrate that the second derivative is always -ve (actually it's a constant) and so we can think that the maximum area should occur at this point. Therefore, for the maximum area the semicircle on top should have a radius of 1.6803 and the rectangle should have the dimensions 3.3606 x 1.6803 (h x 2r).


Related Discussions:- More optimization problems

Write first-order formulas over the relational symbols, Consider the unary ...

Consider the unary relational symbols P and L, and the binary relational symbol On, where P(a) and I(a) encode that a is a point and a (straight) line in the 2-dimensional space, r

Simple interest, write a program C++ programming language to calculate sim...

write a program C++ programming language to calculate simple interest, with it algorithm and it flowchart

Find out indegree, Question: Consider a digraph D on 5 nodes, named x0...

Question: Consider a digraph D on 5 nodes, named x0, x1,.., x4, such that its adjacency matrix contains 1's in all the elements above the diagonal A[0,0], A[1,1], A[2,2],.., e

Fraction, Ask question #Minimum 100 words accepted

Ask question #Minimum 100 words accepted

Real analysis, .find lim sup Ek and liminf Ek of Ek=[(-(1/k),1] for k odd a...

.find lim sup Ek and liminf Ek of Ek=[(-(1/k),1] for k odd and liminf Ek=[(-1,(1/k)] for k even

Quadriatic-equations, Q. a(b - c)x^2 + b(c - a)x + c(a - b) = 0 has equal r...

Q. a(b - c)x^2 + b(c - a)x + c(a - b) = 0 has equal roots then b = ? Ans: Condition that a quadratic equation ax² + bx + c = 0 has equal roots is: Its discriminant, b² - 4ac = 0 A

Developing an understanidng of multiplication, DEVELOPING AN UNDERSTANIDNG ...

DEVELOPING AN UNDERSTANIDNG OF MULTIPLICATION :  The most important aspect of knowing multiplication is to understand what it means and where it is applied. It needs to be first i

Generic rectangles and greatest common factors, miaty and yesenia have a gr...

miaty and yesenia have a group of base ten blocks.Misty has six more than yesnia. Yesenia''s blocks repersent 17 together they have 22 blocks,and the total of blocks repersent 85.

Differential Equations, Find the normalized differential equation which has...

Find the normalized differential equation which has { x, xe^x } as its fundamental set

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd