More optimization problems, Mathematics

Assignment Help:

More Optimization Problems

Example   A window is being built in which the bottom is rectangle and the top is a semicircle. If there framing materials is 12 meters what have to the dimensions of the window be to let in the most light?

Solution

Let's ask this question again in somewhat easier to understand terms.  We desire a window in the shape defined above to contain a maximum area (and therefore let in the most light) and contain a perimeter of 12 m (since we have 12 m of framing material).  Little bit simple to understand in those terms.

Following is a sketch of the window.  h is height of the rectangular portion and since the semicircle is on top and width of the rectangular portion at 2r.

1269_Optimization1.png

The perimeter (our constraint) refers for the lengths of the three sides onto the rectangular portion as well as half the circumference of a circle of radius r. The area (what we desire to maximize) is the area of the rectangle as well as half the area of a circle of radius r.  Following are the equations we'll be working with in this example.

Maximize : A = 2hr +  (½)∏ r 2

Constraint : 12 = 2h + 2r + ∏ r

In this case we'll solve out the constraint for h & plug that into the area equation.

h = 6 - r - 1/2 ∏ r ⇒  A (r )= 2r (6 - r - (1/2) ∏ r) + 1/2 ∏ r 2  =12r - 2r2 - 1/2 ∏ r 2 

The first & second derivatives are,

A′ ( r ) = 12 - r ( 4 + ∏ )                   A′′ ( r ) = -4 - ∏

We can illustrates that the only critical point is,

                                      r = 12 /4 + ∏

We can also illustrate that the second derivative is always -ve (actually it's a constant) and so we can think that the maximum area should occur at this point. Therefore, for the maximum area the semicircle on top should have a radius of 1.6803 and the rectangle should have the dimensions 3.3606 x 1.6803 (h x 2r).


Related Discussions:- More optimization problems

Fractions, what the answer to 1/4+1/3=3/12=?

what the answer to 1/4+1/3=3/12=?

Define histogram, Q. Define histogram? Ans. A histogram is a bar g...

Q. Define histogram? Ans. A histogram is a bar graph that gives the frequency of each value. Here are a few examples to illustrate the usefulness of this method of data r

Undetermined coefficients, UNDETERMINED COEFFICIENTS The way of Undeter...

UNDETERMINED COEFFICIENTS The way of Undetermined Coefficients for systems is pretty much the same to the second order differential equation case. The simple difference is as t

Shares and dividends, how to see shares and dividends of a company and are ...

how to see shares and dividends of a company and are they seen day wise?

Angles, how to measure missing angle of an adjacent angle

how to measure missing angle of an adjacent angle

Illustration of integration by parts - integration technique, Example of In...

Example of Integration by Parts - Integration techniques Some problems could need us to do integration by parts many times and there is a short hand technique that will permit

Mr, Probability of A is 85% Probability of B is 45% Probability A and B 56%...

Probability of A is 85% Probability of B is 45% Probability A and B 56% What is the probability of not either A or B?

Calculate the area of rectangle , Calculate the area of RECTANGLE ? Th...

Calculate the area of RECTANGLE ? The area of a rectangle is the amount of space taken up by a rectangle, which is a two-dimensional shape. You find the area (A) of a recta

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd