More optimization problems, Mathematics

Assignment Help:

More Optimization Problems

Example   A window is being built in which the bottom is rectangle and the top is a semicircle. If there framing materials is 12 meters what have to the dimensions of the window be to let in the most light?

Solution

Let's ask this question again in somewhat easier to understand terms.  We desire a window in the shape defined above to contain a maximum area (and therefore let in the most light) and contain a perimeter of 12 m (since we have 12 m of framing material).  Little bit simple to understand in those terms.

Following is a sketch of the window.  h is height of the rectangular portion and since the semicircle is on top and width of the rectangular portion at 2r.

1269_Optimization1.png

The perimeter (our constraint) refers for the lengths of the three sides onto the rectangular portion as well as half the circumference of a circle of radius r. The area (what we desire to maximize) is the area of the rectangle as well as half the area of a circle of radius r.  Following are the equations we'll be working with in this example.

Maximize : A = 2hr +  (½)∏ r 2

Constraint : 12 = 2h + 2r + ∏ r

In this case we'll solve out the constraint for h & plug that into the area equation.

h = 6 - r - 1/2 ∏ r ⇒  A (r )= 2r (6 - r - (1/2) ∏ r) + 1/2 ∏ r 2  =12r - 2r2 - 1/2 ∏ r 2 

The first & second derivatives are,

A′ ( r ) = 12 - r ( 4 + ∏ )                   A′′ ( r ) = -4 - ∏

We can illustrates that the only critical point is,

                                      r = 12 /4 + ∏

We can also illustrate that the second derivative is always -ve (actually it's a constant) and so we can think that the maximum area should occur at this point. Therefore, for the maximum area the semicircle on top should have a radius of 1.6803 and the rectangle should have the dimensions 3.3606 x 1.6803 (h x 2r).


Related Discussions:- More optimization problems

Algebra, logrithim of function?

logrithim of function?

Newtons method , Newton's Method : If x n is an approximation a solution ...

Newton's Method : If x n is an approximation a solution of f ( x ) = 0 and if given by, f ′ ( x n ) ≠ 0 the next approximation is given by

Maximin method -decision making under uncertainty, Decision making under un...

Decision making under uncertainty Various methods are used to make decision in circumstances whereas only the pay offs are identified and the likelihood of every state of natur

Determine how many valid fortran identifiers, A valid identifier in the pro...

A valid identifier in the programming language FORTAN contains a string of one to six alphanumeric characters (the 36 characters A, B,...., Z, 0, 1,...9) starting with a letter. De

Circles, Circles In this section we are going to take a rapid look at ...

Circles In this section we are going to take a rapid look at circles.  Though, prior to we do that we have to give a quick formula that expectantly you'll recall seeing at som

Sequencing model, theory about solving sequencing problem using graphical m...

theory about solving sequencing problem using graphical method

How to solving one-step equations, How to Solving One-Step Equations? E...

How to Solving One-Step Equations? Equations, where one math operation is acting on the variable, can be solved in one step. The trick is to get the variable x by itself - isol

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd