More optimization problems, Mathematics

Assignment Help:

More Optimization Problems

Example   A window is being built in which the bottom is rectangle and the top is a semicircle. If there framing materials is 12 meters what have to the dimensions of the window be to let in the most light?

Solution

Let's ask this question again in somewhat easier to understand terms.  We desire a window in the shape defined above to contain a maximum area (and therefore let in the most light) and contain a perimeter of 12 m (since we have 12 m of framing material).  Little bit simple to understand in those terms.

Following is a sketch of the window.  h is height of the rectangular portion and since the semicircle is on top and width of the rectangular portion at 2r.

1269_Optimization1.png

The perimeter (our constraint) refers for the lengths of the three sides onto the rectangular portion as well as half the circumference of a circle of radius r. The area (what we desire to maximize) is the area of the rectangle as well as half the area of a circle of radius r.  Following are the equations we'll be working with in this example.

Maximize : A = 2hr +  (½)∏ r 2

Constraint : 12 = 2h + 2r + ∏ r

In this case we'll solve out the constraint for h & plug that into the area equation.

h = 6 - r - 1/2 ∏ r ⇒  A (r )= 2r (6 - r - (1/2) ∏ r) + 1/2 ∏ r 2  =12r - 2r2 - 1/2 ∏ r 2 

The first & second derivatives are,

A′ ( r ) = 12 - r ( 4 + ∏ )                   A′′ ( r ) = -4 - ∏

We can illustrates that the only critical point is,

                                      r = 12 /4 + ∏

We can also illustrate that the second derivative is always -ve (actually it's a constant) and so we can think that the maximum area should occur at this point. Therefore, for the maximum area the semicircle on top should have a radius of 1.6803 and the rectangle should have the dimensions 3.3606 x 1.6803 (h x 2r).


Related Discussions:- More optimization problems

Recognize the intervals for function h ( x ) = 3x5 - 5x3 + 3, For the given...

For the given function recognize the intervals where the function is increasing and decreasing and the intervals where the function is concave up & concave down. Utilizes this info

Proof of various integral facts- formulas, PROOF OF VARIOUS INTEGRAL FACTS/...

PROOF OF VARIOUS INTEGRAL FACTS/FORMULAS/PROPERTIES In this section we've found the proof of several of the properties we saw in the Integrals section and also a couple from t

Profit, A wholesaler allows a discount of 20% on the list price to a retail...

A wholesaler allows a discount of 20% on the list price to a retailer. The retailer sells at 5% discount on the list price.If a customer paid Rs 114 for an article,what profit is m

Example of convergent or divergent - comparison test, Determine if the subs...

Determine if the subsequent series is convergent or divergent. Solution As the cosine term in the denominator doesn't get too large we can suppose that the series term

Triangles, if triangle abc is similar to def and ab/de=3/4 find the ratio a...

if triangle abc is similar to def and ab/de=3/4 find the ratio af their perimeter and area

Circle, #question when equation of tangent T=0 and why

#question when equation of tangent T=0 and why

Series, find the series of the first twenty terms

find the series of the first twenty terms

Need answer!, what is the basic unit of weight in the metric system?

what is the basic unit of weight in the metric system?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd