More optimization problems, Mathematics

Assignment Help:

More Optimization Problems

Example   A window is being built in which the bottom is rectangle and the top is a semicircle. If there framing materials is 12 meters what have to the dimensions of the window be to let in the most light?

Solution

Let's ask this question again in somewhat easier to understand terms.  We desire a window in the shape defined above to contain a maximum area (and therefore let in the most light) and contain a perimeter of 12 m (since we have 12 m of framing material).  Little bit simple to understand in those terms.

Following is a sketch of the window.  h is height of the rectangular portion and since the semicircle is on top and width of the rectangular portion at 2r.

1269_Optimization1.png

The perimeter (our constraint) refers for the lengths of the three sides onto the rectangular portion as well as half the circumference of a circle of radius r. The area (what we desire to maximize) is the area of the rectangle as well as half the area of a circle of radius r.  Following are the equations we'll be working with in this example.

Maximize : A = 2hr +  (½)∏ r 2

Constraint : 12 = 2h + 2r + ∏ r

In this case we'll solve out the constraint for h & plug that into the area equation.

h = 6 - r - 1/2 ∏ r ⇒  A (r )= 2r (6 - r - (1/2) ∏ r) + 1/2 ∏ r 2  =12r - 2r2 - 1/2 ∏ r 2 

The first & second derivatives are,

A′ ( r ) = 12 - r ( 4 + ∏ )                   A′′ ( r ) = -4 - ∏

We can illustrates that the only critical point is,

                                      r = 12 /4 + ∏

We can also illustrate that the second derivative is always -ve (actually it's a constant) and so we can think that the maximum area should occur at this point. Therefore, for the maximum area the semicircle on top should have a radius of 1.6803 and the rectangle should have the dimensions 3.3606 x 1.6803 (h x 2r).


Related Discussions:- More optimization problems

Differentiate inside function in chain rule, Differentiate following. f ...

Differentiate following. f ( x ) = sin (3x 2   + x ) Solution It looks as the outside function is the sine & the inside function is 3x 2 +x. The derivative is then.

Multiplying fractions involving negative numbers, Q. Multiplying Fractions ...

Q. Multiplying Fractions Involving Negative Numbers? Ans. If you have only one negative sign, the result is still negative: If you have more than one, just remembe

Find the 14th term in the arithmetic sequence. 60, Find the 14th term in t...

Find the 14th term in the arithmetic sequence. 60, 68, 76, 84, 92

Calculus, I need help with my calculus work

I need help with my calculus work

The expected monetary value method, The expected monetary value method ...

The expected monetary value method The expected pay off as profit associated with a described combination of act and event is acquired by multiplying the pay off for that act a

BOUNDARY VALUE PROBLEM, Ut=Uxx+A exp(-bx) u(x,0)=A/b^2(1-exp(-bx)) u(0,t)=0...

Ut=Uxx+A exp(-bx) u(x,0)=A/b^2(1-exp(-bx)) u(0,t)=0 u(1,t)=-A/b^2 exp(-b)

Linear programming , use the simplex method to solve the following lp probl...

use the simplex method to solve the following lp problem. max z = 107x1 + x2 + 2x3 subject to 14x1 + x2 - 6x3 + 3x4 = 7 16x1 + x2 - 6x3 3x1 - x2 - x3 x1,x2,x3,x4 > = 0

If all the tickets are the similar price what was the cost, The total ticke...

The total ticket sales for a soccer game were $1,260; 210 tickets were purchased. If all the tickets are the similar price, what was the cost of a ticket? Divide the total sale

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd