More optimization problems, Mathematics

Assignment Help:

More Optimization Problems

Example   A window is being built in which the bottom is rectangle and the top is a semicircle. If there framing materials is 12 meters what have to the dimensions of the window be to let in the most light?

Solution

Let's ask this question again in somewhat easier to understand terms.  We desire a window in the shape defined above to contain a maximum area (and therefore let in the most light) and contain a perimeter of 12 m (since we have 12 m of framing material).  Little bit simple to understand in those terms.

Following is a sketch of the window.  h is height of the rectangular portion and since the semicircle is on top and width of the rectangular portion at 2r.

1269_Optimization1.png

The perimeter (our constraint) refers for the lengths of the three sides onto the rectangular portion as well as half the circumference of a circle of radius r. The area (what we desire to maximize) is the area of the rectangle as well as half the area of a circle of radius r.  Following are the equations we'll be working with in this example.

Maximize : A = 2hr +  (½)∏ r 2

Constraint : 12 = 2h + 2r + ∏ r

In this case we'll solve out the constraint for h & plug that into the area equation.

h = 6 - r - 1/2 ∏ r ⇒  A (r )= 2r (6 - r - (1/2) ∏ r) + 1/2 ∏ r 2  =12r - 2r2 - 1/2 ∏ r 2 

The first & second derivatives are,

A′ ( r ) = 12 - r ( 4 + ∏ )                   A′′ ( r ) = -4 - ∏

We can illustrates that the only critical point is,

                                      r = 12 /4 + ∏

We can also illustrate that the second derivative is always -ve (actually it's a constant) and so we can think that the maximum area should occur at this point. Therefore, for the maximum area the semicircle on top should have a radius of 1.6803 and the rectangle should have the dimensions 3.3606 x 1.6803 (h x 2r).


Related Discussions:- More optimization problems

The sum of two consecutive integers is 41 integer, The sum of two consecuti...

The sum of two consecutive integers is 41. What are the integers? Two consecutive integers are numbers in sequence like 4 and 5 or -30 and -29, that are each 1 number apart. Le

Problem solving for andre, Problem solving for andre A can of powdered ...

Problem solving for andre A can of powdered milk and a can of evaporated milk cost Php 83.90 together. Two cans of evaporated milk and a can of powdered milk cost Php 118.05

Solving an equation problems, Temperature: On one day in Fairfield, Montana...

Temperature: On one day in Fairfield, Montana the temperature dropped 80 degree fahrenheit from noon to midnight. If the temperature at midnight was -21 degree fahrenheit, write an

Evaluating functions, Next we have to talk about evaluating functions.  Eva...

Next we have to talk about evaluating functions.  Evaluating a function is in fact nothing more than asking what its value is for particular values of x. Another way of looking at

Solve the subsequent lp problem, Solve the subsequent LP problem graphicall...

Solve the subsequent LP problem graphically through enumerating the corner points. MAX:              3X1 + 4X2 Subject to:    X1   12                     X2    10

Standard deviation, i need to work out the standard deviation of 21.4

i need to work out the standard deviation of 21.4

Using calculus method, Sheldon as the day for the challenge gets closer wan...

Sheldon as the day for the challenge gets closer wants to enter the race. Not being content with an equal start, he wants to handicap himself by giving the other yachts a head star

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd