More optimization problems, Mathematics

Assignment Help:

More Optimization Problems

Example   A window is being built in which the bottom is rectangle and the top is a semicircle. If there framing materials is 12 meters what have to the dimensions of the window be to let in the most light?

Solution

Let's ask this question again in somewhat easier to understand terms.  We desire a window in the shape defined above to contain a maximum area (and therefore let in the most light) and contain a perimeter of 12 m (since we have 12 m of framing material).  Little bit simple to understand in those terms.

Following is a sketch of the window.  h is height of the rectangular portion and since the semicircle is on top and width of the rectangular portion at 2r.

1269_Optimization1.png

The perimeter (our constraint) refers for the lengths of the three sides onto the rectangular portion as well as half the circumference of a circle of radius r. The area (what we desire to maximize) is the area of the rectangle as well as half the area of a circle of radius r.  Following are the equations we'll be working with in this example.

Maximize : A = 2hr +  (½)∏ r 2

Constraint : 12 = 2h + 2r + ∏ r

In this case we'll solve out the constraint for h & plug that into the area equation.

h = 6 - r - 1/2 ∏ r ⇒  A (r )= 2r (6 - r - (1/2) ∏ r) + 1/2 ∏ r 2  =12r - 2r2 - 1/2 ∏ r 2 

The first & second derivatives are,

A′ ( r ) = 12 - r ( 4 + ∏ )                   A′′ ( r ) = -4 - ∏

We can illustrates that the only critical point is,

                                      r = 12 /4 + ∏

We can also illustrate that the second derivative is always -ve (actually it's a constant) and so we can think that the maximum area should occur at this point. Therefore, for the maximum area the semicircle on top should have a radius of 1.6803 and the rectangle should have the dimensions 3.3606 x 1.6803 (h x 2r).


Related Discussions:- More optimization problems

A single student is selected at random, The scores of students taking the A...

The scores of students taking the ACT college entrance examination are normally distributed with a mean µ = 20.1 and a standard deviation σ = 5.8. a)    A single student is sele

Evaluate following. 0ln (1+)excos(1-ex)dx substitution, Evaluate following....

Evaluate following. ∫ 0 ln (1 + π )   e x cos(1-e x )dx Solution The limits are little unusual in this case, however that will happen sometimes therefore don't get

Linear independence and dependence, It is not the first time that we've loo...

It is not the first time that we've looked this topic. We also considered linear independence and linear dependence back while we were looking at second order differential equation

Cross product - vector, Cross Product In this last section we will loo...

Cross Product In this last section we will look at the cross product of two vectors.  We must note that the cross product needs both of the vectors to be three dimensional (3D

expected value, Describe the distribution of sample means shapefor samples...

Describe the distribution of sample means shapefor samples of n=36 selected from a population with a mean of μ=100 and a standard deviation of o=12.  , expected value, and standard

Find out a if f(x) is continuous at x = -2 , Example   Given the graph of ...

Example   Given the graph of f(x), illustrated below, find out if f(x) is continuous at x = -2 , x = 0 , and x = 3 . Solution To give answer of the question for each

Evalute right-hand limit, Evaluate following limits. Solution ...

Evaluate following limits. Solution Let's begin with the right-hand limit.  For this limit we have, x > 4  ⇒          4 - x 3   = 0      also, 4 - x → 0  as x → 4

#title., I need to follow the pattern .125,.25,.375,.5, ?

I need to follow the pattern .125,.25,.375,.5, ?

What is the smallest possible number 3, What is the smallest possible numbe...

What is the smallest possible number in which can be created along with four decimal places using the numbers 3, 5, 6, and 8? Place the smallest number in the largest place val

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd