More optimization problems, Mathematics

Assignment Help:

More Optimization Problems

Example   A window is being built in which the bottom is rectangle and the top is a semicircle. If there framing materials is 12 meters what have to the dimensions of the window be to let in the most light?

Solution

Let's ask this question again in somewhat easier to understand terms.  We desire a window in the shape defined above to contain a maximum area (and therefore let in the most light) and contain a perimeter of 12 m (since we have 12 m of framing material).  Little bit simple to understand in those terms.

Following is a sketch of the window.  h is height of the rectangular portion and since the semicircle is on top and width of the rectangular portion at 2r.

1269_Optimization1.png

The perimeter (our constraint) refers for the lengths of the three sides onto the rectangular portion as well as half the circumference of a circle of radius r. The area (what we desire to maximize) is the area of the rectangle as well as half the area of a circle of radius r.  Following are the equations we'll be working with in this example.

Maximize : A = 2hr +  (½)∏ r 2

Constraint : 12 = 2h + 2r + ∏ r

In this case we'll solve out the constraint for h & plug that into the area equation.

h = 6 - r - 1/2 ∏ r ⇒  A (r )= 2r (6 - r - (1/2) ∏ r) + 1/2 ∏ r 2  =12r - 2r2 - 1/2 ∏ r 2 

The first & second derivatives are,

A′ ( r ) = 12 - r ( 4 + ∏ )                   A′′ ( r ) = -4 - ∏

We can illustrates that the only critical point is,

                                      r = 12 /4 + ∏

We can also illustrate that the second derivative is always -ve (actually it's a constant) and so we can think that the maximum area should occur at this point. Therefore, for the maximum area the semicircle on top should have a radius of 1.6803 and the rectangle should have the dimensions 3.3606 x 1.6803 (h x 2r).


Related Discussions:- More optimization problems

The low temperature in Achorage, The low temperature in Anchorage, Alaska t...

The low temperature in Anchorage, Alaska today was negative four degrees. The low temperature in Los Angeles, California was sixty-three degreees. What is the difference in the two

Infinite limits, Infinite Limits : In this section we will see limits who...

Infinite Limits : In this section we will see limits whose value is infinity or minus infinity.  The primary thing we have to probably do here is to define just what we mean w

Probability, TWO PERSONS A AND B AGREE TO MEET AT A PLACE BTWEEN 11 TO 12 N...

TWO PERSONS A AND B AGREE TO MEET AT A PLACE BTWEEN 11 TO 12 NOON.  THE FIRST ONE TOARRIVE WAITS FOR 20 MIN AND THEN LEAVE. IF THE TIME OF THIR ARRIVAL BE INDEPENDET AND AT RNDOM,T

Inverse sine, Inverse Sine : Let's begin with inverse sine.  Following is ...

Inverse Sine : Let's begin with inverse sine.  Following is the definition of the inverse sine. y = sin -1 x         ⇔     sin y = x                for - ?/2 ≤ y ≤ ?/2 Hen

Management, Discuss demanding total market demand verus gaing market share

Discuss demanding total market demand verus gaing market share

Solve the subsequent lp problem, Solve the subsequent LP problem graphicall...

Solve the subsequent LP problem graphically through enumerating the corner points. MAX:              3X1 + 4X2 Subject to:    X1   12                     X2    10

Relative motion, how to find the minimum distance between any two particles...

how to find the minimum distance between any two particles which are in relative motion?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd