More optimization problems, Mathematics

Assignment Help:

More Optimization Problems

Example   A window is being built in which the bottom is rectangle and the top is a semicircle. If there framing materials is 12 meters what have to the dimensions of the window be to let in the most light?

Solution

Let's ask this question again in somewhat easier to understand terms.  We desire a window in the shape defined above to contain a maximum area (and therefore let in the most light) and contain a perimeter of 12 m (since we have 12 m of framing material).  Little bit simple to understand in those terms.

Following is a sketch of the window.  h is height of the rectangular portion and since the semicircle is on top and width of the rectangular portion at 2r.

1269_Optimization1.png

The perimeter (our constraint) refers for the lengths of the three sides onto the rectangular portion as well as half the circumference of a circle of radius r. The area (what we desire to maximize) is the area of the rectangle as well as half the area of a circle of radius r.  Following are the equations we'll be working with in this example.

Maximize : A = 2hr +  (½)∏ r 2

Constraint : 12 = 2h + 2r + ∏ r

In this case we'll solve out the constraint for h & plug that into the area equation.

h = 6 - r - 1/2 ∏ r ⇒  A (r )= 2r (6 - r - (1/2) ∏ r) + 1/2 ∏ r 2  =12r - 2r2 - 1/2 ∏ r 2 

The first & second derivatives are,

A′ ( r ) = 12 - r ( 4 + ∏ )                   A′′ ( r ) = -4 - ∏

We can illustrates that the only critical point is,

                                      r = 12 /4 + ∏

We can also illustrate that the second derivative is always -ve (actually it's a constant) and so we can think that the maximum area should occur at this point. Therefore, for the maximum area the semicircle on top should have a radius of 1.6803 and the rectangle should have the dimensions 3.3606 x 1.6803 (h x 2r).


Related Discussions:- More optimization problems

DIFFERENTIAL EQUATIONS, WHICH LIFE PROBLEMS CAN BE SOLVED USING THE KNOWLED...

WHICH LIFE PROBLEMS CAN BE SOLVED USING THE KNOWLEDGE OF DIFFERNTIAL EQUATIONS?

How is probability distribution of random variable construct, How is the pr...

How is the probability distribution of a random variable constructed? Usually, the past behavior of the variable is studied and the frequency distribution of the past data is form

Logarithmic functions- general properties, Logarithmic functi...

Logarithmic functions have the following general properties If y = log a x, a > 0 and a ≠1, then The domain of the function

LASPEYRES AND PAASCHE, advantages and disadvantages of laspeyres and paasch...

advantages and disadvantages of laspeyres and paasche

Real Analysis/Advanced Calculus (Needs to be a full proof), Both need to be...

Both need to be a full page, detailed proof. Not just a few lines of proof. (1) “Every convergent sequence contains either an increasing, or a decreasing subsequence (or possibly

Stratified sampling, Stratified sampling In stratified sampling case t...

Stratified sampling In stratified sampling case the population is divided into groups in such a way that units in each group are as same as possible in a process called strati

Determine the area of the sail, If a triangular sail has a horizontal lengt...

If a triangular sail has a horizontal length of 30 ft and a vertical height of 83 ft , Determine the area of the sail? a. 1,245 ft 2 b. 1,155 ft 2 c. 201 ft 2 d. 2,4

Multiple, what number does not belong 43,47,53,59,65,67

what number does not belong 43,47,53,59,65,67

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd