More optimization problems, Mathematics

Assignment Help:

More Optimization Problems

Example   A window is being built in which the bottom is rectangle and the top is a semicircle. If there framing materials is 12 meters what have to the dimensions of the window be to let in the most light?

Solution

Let's ask this question again in somewhat easier to understand terms.  We desire a window in the shape defined above to contain a maximum area (and therefore let in the most light) and contain a perimeter of 12 m (since we have 12 m of framing material).  Little bit simple to understand in those terms.

Following is a sketch of the window.  h is height of the rectangular portion and since the semicircle is on top and width of the rectangular portion at 2r.

1269_Optimization1.png

The perimeter (our constraint) refers for the lengths of the three sides onto the rectangular portion as well as half the circumference of a circle of radius r. The area (what we desire to maximize) is the area of the rectangle as well as half the area of a circle of radius r.  Following are the equations we'll be working with in this example.

Maximize : A = 2hr +  (½)∏ r 2

Constraint : 12 = 2h + 2r + ∏ r

In this case we'll solve out the constraint for h & plug that into the area equation.

h = 6 - r - 1/2 ∏ r ⇒  A (r )= 2r (6 - r - (1/2) ∏ r) + 1/2 ∏ r 2  =12r - 2r2 - 1/2 ∏ r 2 

The first & second derivatives are,

A′ ( r ) = 12 - r ( 4 + ∏ )                   A′′ ( r ) = -4 - ∏

We can illustrates that the only critical point is,

                                      r = 12 /4 + ∏

We can also illustrate that the second derivative is always -ve (actually it's a constant) and so we can think that the maximum area should occur at this point. Therefore, for the maximum area the semicircle on top should have a radius of 1.6803 and the rectangle should have the dimensions 3.3606 x 1.6803 (h x 2r).


Related Discussions:- More optimization problems

Example of binomial distribution, Example:  Joanne is given a four-question...

Example:  Joanne is given a four-question multiple-choice quiz.  She hasnt studied the material to be quizzed, so she decides to answer the questions by randomly guessing the answe

Example of vector, Provide the vector for each of the following. (a) The...

Provide the vector for each of the following. (a) The vector from (2, -7, 0) -  (1, - 3, - 5 ) (b) The vector from (1,-3,-5) - (2, - 7, 0) (c) The position vector for ( -

Proof of various integral facts- formulas, PROOF OF VARIOUS INTEGRAL FACTS/...

PROOF OF VARIOUS INTEGRAL FACTS/FORMULAS/PROPERTIES In this section we've found the proof of several of the properties we saw in the Integrals section and also a couple from t

Measures of dispersion- measures of central tendency, Measures of Dispersio...

Measures of Dispersion - The measures of dispersion are extremely useful in statistical work since they indicate whether the rest of the data are scattered away from the mean

What is the value of the lesser integer, The sum of three times a greater i...

The sum of three times a greater integer and 5 times a lesser integer is 9. Three less than the greater equivalent the lesser. What is the value of the lesser integer? Let x =

Example on abels theorem, Without solving, find out the Wronskian of two so...

Without solving, find out the Wronskian of two solutions to the subsequent differential equation. t 4 y'' - 2t 3 y' - t 8 y = 0 Solution : First thing that we want to d

Calculus level 2, the first question should be done using the website given...

the first question should be done using the website given (www.desmos.com/calculator )and another good example to explain using the graph ( https://www.desmos.com/calculator/ydimzr

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd