More optimization problems, Mathematics

Assignment Help:

More Optimization Problems

Example   A window is being built in which the bottom is rectangle and the top is a semicircle. If there framing materials is 12 meters what have to the dimensions of the window be to let in the most light?

Solution

Let's ask this question again in somewhat easier to understand terms.  We desire a window in the shape defined above to contain a maximum area (and therefore let in the most light) and contain a perimeter of 12 m (since we have 12 m of framing material).  Little bit simple to understand in those terms.

Following is a sketch of the window.  h is height of the rectangular portion and since the semicircle is on top and width of the rectangular portion at 2r.

1269_Optimization1.png

The perimeter (our constraint) refers for the lengths of the three sides onto the rectangular portion as well as half the circumference of a circle of radius r. The area (what we desire to maximize) is the area of the rectangle as well as half the area of a circle of radius r.  Following are the equations we'll be working with in this example.

Maximize : A = 2hr +  (½)∏ r 2

Constraint : 12 = 2h + 2r + ∏ r

In this case we'll solve out the constraint for h & plug that into the area equation.

h = 6 - r - 1/2 ∏ r ⇒  A (r )= 2r (6 - r - (1/2) ∏ r) + 1/2 ∏ r 2  =12r - 2r2 - 1/2 ∏ r 2 

The first & second derivatives are,

A′ ( r ) = 12 - r ( 4 + ∏ )                   A′′ ( r ) = -4 - ∏

We can illustrates that the only critical point is,

                                      r = 12 /4 + ∏

We can also illustrate that the second derivative is always -ve (actually it's a constant) and so we can think that the maximum area should occur at this point. Therefore, for the maximum area the semicircle on top should have a radius of 1.6803 and the rectangle should have the dimensions 3.3606 x 1.6803 (h x 2r).


Related Discussions:- More optimization problems

#probability, A B C play a game. If chance of their winning it in an attemp...

A B C play a game. If chance of their winning it in an attempt arr2/3, 1/2, 1/4 respective. A has a first chance followed by Band Called respective chances of winning the game.

Produce list containing m-vectors delta and lambda, The logarithm of the Po...

The logarithm of the Poisson mixture likelihood (3.10) can be calculated with the following R code: sum(log(outer(x,lambda,dpois) %*% delta)), where delta and lambda are m-ve

Find the function and domain, Consider the function f(x) = x + 1/x 2 + 2x ...

Consider the function f(x) = x + 1/x 2 + 2x - 3. (a) Find f(2) and f(-2). (b) Find the domain of f(x). (c) Does the range include 1? Show your working. (d) Find and si

Comparing and scaling, a dairy mngr says it takes 70lbs of make 10 lbs of c...

a dairy mngr says it takes 70lbs of make 10 lbs of cottage cheese... How do I make a rate table and a make a graph showing the relationship between lbs of milk and lbs of cottage c

Estimate the rms value and prominent features, Figure shows the auto-spect...

Figure shows the auto-spectral density for a signal from an accelerometer which was attached to the front body of a car directly above its front suspension while it was driven at 6

All subjects, I need help. Is there anyone there to help me?

I need help. Is there anyone there to help me?

Minima, Minima, Maxima and points of inflexion a)      Test for rela...

Minima, Maxima and points of inflexion a)      Test for relative maximum Consider the given function of x whose graph is presented by the figure given below

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd