Monte-carlo simulation, Financial Management

Assignment Help:

Monte-Carlo Simulation

Let us, for a shortwhile, leave the illustration for determining the price and consider a simpler illustration for understanding the Monte-Carlo method of simulation.

Example 

A dealer in refrigerators wants to use a scientific method to reduce his investment in stock. The daily demand for a refrigerator is random and varies from day to day in an unpredictable pattern. From the past sales records, the dealer has been able to establish a probability distribution of the demand as given below:

Daily demand (units)

2

3

4

5

6

7

8

9

10

Probability

0.06

0.14

0.18

0.17

0.16

0.12

0.08

0.06

0.03 

The dealer also knows from his past experience that the lead time is almost fixed at 5 days. The dealer would like to study the implications of a possible inventory policy of ordering 30 units, whenever the inventory at the end of the day is 20 units. The inventory on hand is 30 units and the simulation can be run for 25 days. Use the following random numbers.

Random Numbers

03

38

17

32

69

24

61

30

03

48

88

71

27

80

33

90

78

55

87

16

34

45

59

20

59

When we conduct simulation runs, we use random numbers to simulate the actual demand. How do we assign, say, two digit random numbers chosen for a particular demand and also take into account the probabilities known? This is done by calculating the cumulative probabilities at each level of demand as shown below:

Daily Demand (units)

Probability

Cumulative Probability

Random numbers allotted

2

3

4

5

6

7

8

9

10

0.06

0.14

0.18

0.17

0.16

0. 2

0.08

0.06

0.03

0.06

0.20

0.38

0.55

0.71

0.83

0.91

0.97

1.00

00 - 05

06 - 19

20 - 37

38 - 54

55 - 70

71 - 82

83 - 90

91 - 96

97 - 99

The random numbers have been allotted on the basis of the following logic. Looking at the cumulative probabilities we can say that a number between 0 and 5, or to be exact, the numbers 0, 1, 2, 3, 4 and 5 (six numbers in all) signify a demand level of 2 units. Similarly, the random numbers 6 to 19 (i.e. 14 numbers) correspond to the demand level of 3 units and so on. The result of simulation trials conducted for 25 days is  tabulated below:

Day

Random no. generated

Inventory at the beginning of the day(units)

Daily demand (units)

Inventory at the end of the day (units)

Lost sales (units)

Stocks received

Qty. ordered

1

2

3

4

5

6

7

8

1

03

30

2

28

-

-

-

2

38

28

5

23

-

-

-

3

17

23

3

20

-

-

30

4

32

20

4

16

-

-

-

5

69

16

6

10

-

-

-

6

24

10

4

6

-

-

-

7

61

6

6

0

-

-

-

8

30

0

4

0

4

30

-

9

03

30

2

28

-

-

-

10

48

28

5

23

-

-

-

11

88

23

8

15

-

-

30

12

71

15

7

8

-

-

-

13

27

8

4

4

-

-

-

14

80

4

7

0

3

-

-

15

33

0

4

0

4

-

-

16

90

0

8

0

8

30

-

17

78

30

7

23

-

-

-

18

55

23

6

17

-

-

30

19

87

17

8

9

-

-

-

20

16

9

3

6

-

-

-

21

34

6

4

2

-

-

-

22

45

2

5

0

3

-

-

23

59

0

6

0

6

30

-

24

20

30

4

26

-

-

-

25

59

26

6

20

-

-

30

Column 2 of the table indicates the series of random numbers drawn from a random number table. The demand corresponding to the random number has been listed in column 4. Though the table contains the stock position, sales lost, quantities received and an order for each trial, how do we evaluate the financial implication of the inventory policy which has fixed the reorder point at 20 units and the ordering quantity at 30 units? To do this, we would have to gather details regarding ordering cost, carrying costs and storage costs and determine the total cost. The policy could then be varied and the total cost determined for alternative policies through simulation. The most acceptable policy would be the one that shows the least total cost (an alternative method would be to compare the average total cost for 25 days). Even without assigning any costs, we can observe from the table that the policy of ordering 30 units whenever stock falls to 20 units is not desirable as quite a number of lost sales units have arisen over a short period of 25 days.


Related Discussions:- Monte-carlo simulation

NPV, Roxanne invested $560,000 in a new business 7 years ago. The business ...

Roxanne invested $560,000 in a new business 7 years ago. The business was expected to bring in $8,000 each month for the next 26 years (in excess of all costs). The annual cost of

Statement of total comprehensive income for the year, At 31 July 2010 this ...

At 31 July 2010 this instrument meets the definition of a derivative: Small or no initial investment. Its value is dependent on an underlying economic item; exchange ra

What can financial institution often do for deficit econmic, What can a fin...

What can a financial institution often do for a deficit economic unit (DEU) that it would have difficulty doing for itself if the DEU were to deal directly with an SEU? SEUs us

Determine interest coverage ratio, Q. Determine Interest coverage ratio? ...

Q. Determine Interest coverage ratio? Current interest coverage ratio = 7000/500 = 14 times Increased profit before interest and tax = 7000 × 1.12 = $7.84m Increased inte

Evaluate financial report and analysis, Project Specifications Complete...

Project Specifications Complete an individual Financial Report and Analysis. You will select a company that you would like to analyze based on the parameters provided by the

Illustrate about foreign exchange earnings, Q. Illustrate about foreign exc...

Q. Illustrate about foreign exchange earnings? In theory foreign exchange earnings must not be hedged as the chances of an adverse movement are equivalent to those of a favoura

How do financial managers calculate the average tax rate, How do financial ...

How do financial managers calculate the average tax rate? Financial managers calculate the average tax rate by dividing tax dollars paid by earnings before taxes (EBT).

What do you mean by time value of money, Q. What do you mean by Time value ...

Q. What do you mean by Time value of money ? The concept of TVM refers to the fact that the money received today is different in its worth from the money receivable at some oth

Types of floating-rate securities, Floating rate securities can be br...

Floating rate securities can be broadly divided into following two parts: Floating-rate securities that have constant quoted margin. Floating-rate sec

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd