Monte-carlo simulation, Financial Management

Assignment Help:

Monte-Carlo Simulation

Let us, for a shortwhile, leave the illustration for determining the price and consider a simpler illustration for understanding the Monte-Carlo method of simulation.

Example 

A dealer in refrigerators wants to use a scientific method to reduce his investment in stock. The daily demand for a refrigerator is random and varies from day to day in an unpredictable pattern. From the past sales records, the dealer has been able to establish a probability distribution of the demand as given below:

Daily demand (units)

2

3

4

5

6

7

8

9

10

Probability

0.06

0.14

0.18

0.17

0.16

0.12

0.08

0.06

0.03 

The dealer also knows from his past experience that the lead time is almost fixed at 5 days. The dealer would like to study the implications of a possible inventory policy of ordering 30 units, whenever the inventory at the end of the day is 20 units. The inventory on hand is 30 units and the simulation can be run for 25 days. Use the following random numbers.

Random Numbers

03

38

17

32

69

24

61

30

03

48

88

71

27

80

33

90

78

55

87

16

34

45

59

20

59

When we conduct simulation runs, we use random numbers to simulate the actual demand. How do we assign, say, two digit random numbers chosen for a particular demand and also take into account the probabilities known? This is done by calculating the cumulative probabilities at each level of demand as shown below:

Daily Demand (units)

Probability

Cumulative Probability

Random numbers allotted

2

3

4

5

6

7

8

9

10

0.06

0.14

0.18

0.17

0.16

0. 2

0.08

0.06

0.03

0.06

0.20

0.38

0.55

0.71

0.83

0.91

0.97

1.00

00 - 05

06 - 19

20 - 37

38 - 54

55 - 70

71 - 82

83 - 90

91 - 96

97 - 99

The random numbers have been allotted on the basis of the following logic. Looking at the cumulative probabilities we can say that a number between 0 and 5, or to be exact, the numbers 0, 1, 2, 3, 4 and 5 (six numbers in all) signify a demand level of 2 units. Similarly, the random numbers 6 to 19 (i.e. 14 numbers) correspond to the demand level of 3 units and so on. The result of simulation trials conducted for 25 days is  tabulated below:

Day

Random no. generated

Inventory at the beginning of the day(units)

Daily demand (units)

Inventory at the end of the day (units)

Lost sales (units)

Stocks received

Qty. ordered

1

2

3

4

5

6

7

8

1

03

30

2

28

-

-

-

2

38

28

5

23

-

-

-

3

17

23

3

20

-

-

30

4

32

20

4

16

-

-

-

5

69

16

6

10

-

-

-

6

24

10

4

6

-

-

-

7

61

6

6

0

-

-

-

8

30

0

4

0

4

30

-

9

03

30

2

28

-

-

-

10

48

28

5

23

-

-

-

11

88

23

8

15

-

-

30

12

71

15

7

8

-

-

-

13

27

8

4

4

-

-

-

14

80

4

7

0

3

-

-

15

33

0

4

0

4

-

-

16

90

0

8

0

8

30

-

17

78

30

7

23

-

-

-

18

55

23

6

17

-

-

30

19

87

17

8

9

-

-

-

20

16

9

3

6

-

-

-

21

34

6

4

2

-

-

-

22

45

2

5

0

3

-

-

23

59

0

6

0

6

30

-

24

20

30

4

26

-

-

-

25

59

26

6

20

-

-

30

Column 2 of the table indicates the series of random numbers drawn from a random number table. The demand corresponding to the random number has been listed in column 4. Though the table contains the stock position, sales lost, quantities received and an order for each trial, how do we evaluate the financial implication of the inventory policy which has fixed the reorder point at 20 units and the ordering quantity at 30 units? To do this, we would have to gather details regarding ordering cost, carrying costs and storage costs and determine the total cost. The policy could then be varied and the total cost determined for alternative policies through simulation. The most acceptable policy would be the one that shows the least total cost (an alternative method would be to compare the average total cost for 25 days). Even without assigning any costs, we can observe from the table that the policy of ordering 30 units whenever stock falls to 20 units is not desirable as quite a number of lost sales units have arisen over a short period of 25 days.


Related Discussions:- Monte-carlo simulation

Conversion privilege, In convertible bonds, bondholders get a right t...

In convertible bonds, bondholders get a right to convert their bonds for a specific number of shares of the bond issuer. This privilege allows bondholders to take

Relation between Inflation and FX, If the 180-day forward rate for the Poun...

If the 180-day forward rate for the Pound were GBPARS 21.45 (today GBPARS 19.5) what does this tell you about inflation in Argentina, explain your assumptions and the link with the

Significance of secondary markets, Significance of Secondary Markets: H...

Significance of Secondary Markets: High liquidity and constant demand in the market need a diversified investor base with different preferences of demand, maturity and risk. Ap

Bonds Valuation, Six years ago . the singleton company sold a 20 year bond ...

Six years ago . the singleton company sold a 20 year bond with a 14% annual coupon rate and a 9% call premium. today, singleton called the bonds. the bonds originally were sold at

Criticism of profit maximization approach, Criticism of Profit Maximization...

Criticism of Profit Maximization Approach: (i) Ambiguous: - One practical complexity with this approach is that the term profit is ambiguous. Different people take dissimilar me

Define country’s economic well being enhanced, How is a country’s economic ...

How is a country’s economic well-being enhanced through free international trade in goods and services? As per to David Ricardo, with free international trade, it is mutually adv

Explain the benefits and drawbacks of financial hedging, What are the benef...

What are the benefits and drawbacks of financial hedging of the firm’s operating exposure vis-a-vis operational hedges (like relocating manufacturing site)? Answer:  Financial he

Display the position explicitly, Q. Display the position explicitly Ex...

Q. Display the position explicitly Example: I borrow 7800000 HKD at time t = t 0 at an interest rate r t0 . After one year I pay back 7800000(1 + rt o ). At

Explain net present value method, Q. Explain Net Present Value Method? ...

Q. Explain Net Present Value Method? Net Present Value (NPV) Method: - This process measures the Present value of returns per rupee invested. In this method present value of

Discuss risk from perspective of capital asset pricing model, Discuss risk ...

Discuss risk from the perspective of the Capital Asset Pricing Model (CAPM). The Capital Asset Pricing Model or CAPM be able to be used to compute the appropriate required rate

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd