Modeling with first order differential equations, Mathematics

Assignment Help:

We here move to one of the major applications of differential equations both into this class and in general. Modeling is the process of writing a differential equation to explain a physical situation. Mostly all of the differential equations which you will use in your job as for the engineers out there in the audience are there since somebody, at several time, modeled a situation to come up along with the differential equation which you are using.

In this section is not intended to wholly teach you how to go regarding to modeling all physical situations. A complete course could be dedicated to the subject of modeling and even not cover everything! This section is implemented to introduce you to the method of modeling and demonstrate you what is included in modeling.  We will seem three different situations in this section as: Falling Bodies, Population Problems and Mixing Problems.

In these all of situations we will be forced to create assumptions that do not correctly depict reality in most cases, but without them the problems would be extremely difficult and beyond the scope of such discussion and also the course in most cases to be truthful.


Related Discussions:- Modeling with first order differential equations

Differential equations, Verify Liouville''''''''s formula for y "-y" - y'''...

Verify Liouville''''''''s formula for y "-y" - y'''''''' + y = 0 in (0, 1) ?

Solve the recurrence relation, Solve the recurrence relation T ...

Solve the recurrence relation T (K) = 2T (K-1), T (0) = 1 Ans: The following equation can be written in the subsequent form:  t n - 2t n-1 =  0  Here now su

Differential equation to determine initial value problem, Solve the subsequ...

Solve the subsequent IVP. cos(x) y' + sin(x) y = 2 cos 3 (x) sin(x) - 1 y(p/4) = 3√2, 0 Solution : Rewrite the differential equation to determine the coefficient of t

Determine the volume of the hollowed solid, A cylindrical hole with a radiu...

A cylindrical hole with a radius of 4 inches is cut through a cube. The edge of the cube is 5 inches. Determine the volume of the hollowed solid in terms of π. a. 125 - 80π

.., rectangles 7cm by 4cm

rectangles 7cm by 4cm

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd