Mixing problems, Mathematics

Assignment Help:

In these problems we will begin with a substance which is dissolved in a liquid. Liquid will be entering as well as leaving a holding tank. The liquid entering the tank may or may not hold more of the substance dissolved into it. Liquid leaving the tank will of course comprise the substance dissolved in it. If Q (t) provides the amount of the substance dissolved into the liquid in the tank at any time t we need to develop a differential equation that, as solved, will provide us an expression for Q(t). Remember as well that in several situations we can think of air as a liquid for the reasons of these kinds of discussions and thus we don't actually require having an actual liquid, though could instead use air like the "liquid".

The major assumption that we'll be using here is which the concentration of the substance in the liquid is uniform during the tank. Obviously it will not be the case, although if we permit the concentration to vary depending upon the location into the tank the problem turns into very difficult and will include partial differential equations that are not the focus of this course.

The most important "equation" which we'll be using to model this situation is as:

Rate of change of Q(t)   = Rate at that Q(t) enters the tank - Rate at that Q(t) exits the tank

Here,

Rate of change of Q(t) = dQ/dt = Q'(t)

Rate at that Q(t) enters the tank= (flow rate of liquid entering) x (concentration of substance in liquid entering

 Rate at that Q(t) exits the tank = (flow rate of liquid exiting) x (concentration of substance in liquid exiting)


Related Discussions:- Mixing problems

Cardioids and limacons - polar coordinates, Cardioids and Limacons Thes...

Cardioids and Limacons These can be split up into the following three cases. 1. Cardioids: r = a + a cos θ and r = a + a sin θ. These encompass a graph that is vaguel

Use the definition of the right- and left-handed limits, Use the definition...

Use the definition of the limit to prove the given limit. Solution Let ε> 0 is any number then we have to find a number δ > 0 so that the following will be true. |

Compute the essential matrix and epipolar lines , 1. In Figure there are th...

1. In Figure there are three cameras where the distance between the cameras is B, and all three cameras have the same focal length f. The disparity dL = x0 - xL, while the disparit

Differential equation of newton’s law of cooling , 1. A direction ?eld for...

1. A direction ?eld for a differential equation is shown. Draw, with a ruler, the graphs of the Euler approximations to the solution curve that passes through the origin. Use step

What is the maximum number calories which consume from fats, Josephine is o...

Josephine is on an 1,800 calorie per day diet. She tries to remain her intake of fat to no more than 30% of her overall calories. Based on an 1,800 calorie a day diet, what is the

What is limit x tends to 0 log(1+x)/x to the base a?, Here we will use the...

Here we will use the expansion method Firstly lim x-0 log a (1+x)/x firstly using log property we get: lim x-0 log a (1+x)-logx then we change the base of log i.e lim x-0 {l

.fractions, what is the difference between North America''s part of the tot...

what is the difference between North America''s part of the total population and Africa''s part

Math project , Topic 1: Statistical Studies Find two different news storie...

Topic 1: Statistical Studies Find two different news stories in a mainstream media source (CNN, FoxNews, Newsweek, etc.), that cite data from a recognized poling agency. Locate th

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd