Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
In these problems we will begin with a substance which is dissolved in a liquid. Liquid will be entering as well as leaving a holding tank. The liquid entering the tank may or may not hold more of the substance dissolved into it. Liquid leaving the tank will of course comprise the substance dissolved in it. If Q (t) provides the amount of the substance dissolved into the liquid in the tank at any time t we need to develop a differential equation that, as solved, will provide us an expression for Q(t). Remember as well that in several situations we can think of air as a liquid for the reasons of these kinds of discussions and thus we don't actually require having an actual liquid, though could instead use air like the "liquid".
The major assumption that we'll be using here is which the concentration of the substance in the liquid is uniform during the tank. Obviously it will not be the case, although if we permit the concentration to vary depending upon the location into the tank the problem turns into very difficult and will include partial differential equations that are not the focus of this course.
The most important "equation" which we'll be using to model this situation is as:
Rate of change of Q(t) = Rate at that Q(t) enters the tank - Rate at that Q(t) exits the tank
Here,
Rate of change of Q(t) = dQ/dt = Q'(t)
Rate at that Q(t) enters the tank= (flow rate of liquid entering) x (concentration of substance in liquid entering
Rate at that Q(t) exits the tank = (flow rate of liquid exiting) x (concentration of substance in liquid exiting)
If the sides angles of a triangle ABC vary in such a way that it''s circum - radius remain constant. Prove that, da/cos A +db/cos B+dc/cos C=0
about scalene,equilateral and isosceles.
The value of a computer is depreciated over ?ve years for tax reasons (meaning that at the end of ?ve years, the computer is worth $0). If a business paid $2,100 for a computer, ho
Solve x^2 - 2x -15 = 0
why this kolavari di?
Utilizes the definition of the limit to prove the given limit. Solution In this case both L & a are zero. So, let ε 0 so that the following will be true. |x 2 - 0|
What is the prime factorization of 84? This is the only answer choice which has only PRIME numbers. A prime number is a number along with two and only two distinct factors. In
find the area bounded by the curve y=5x^2-4x+3 from the limit x=0 to x=5
If d is the HCF of 30, 72, find the value of x & y satisfying d = 30x + 72y. (Ans:5, -2 (Not unique) Ans: Using Euclid's algorithm, the HCF (30, 72) 72 = 30 × 2 + 12
A survey of 400 of recently qualified chartered Accountant revealed that 112 joined industry, 120 stated practice & 160 joined the firms of practicing chartered accountants as paid
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd