Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
In these problems we will begin with a substance which is dissolved in a liquid. Liquid will be entering as well as leaving a holding tank. The liquid entering the tank may or may not hold more of the substance dissolved into it. Liquid leaving the tank will of course comprise the substance dissolved in it. If Q (t) provides the amount of the substance dissolved into the liquid in the tank at any time t we need to develop a differential equation that, as solved, will provide us an expression for Q(t). Remember as well that in several situations we can think of air as a liquid for the reasons of these kinds of discussions and thus we don't actually require having an actual liquid, though could instead use air like the "liquid".
The major assumption that we'll be using here is which the concentration of the substance in the liquid is uniform during the tank. Obviously it will not be the case, although if we permit the concentration to vary depending upon the location into the tank the problem turns into very difficult and will include partial differential equations that are not the focus of this course.
The most important "equation" which we'll be using to model this situation is as:
Rate of change of Q(t) = Rate at that Q(t) enters the tank - Rate at that Q(t) exits the tank
Here,
Rate of change of Q(t) = dQ/dt = Q'(t)
Rate at that Q(t) enters the tank= (flow rate of liquid entering) x (concentration of substance in liquid entering
Rate at that Q(t) exits the tank = (flow rate of liquid exiting) x (concentration of substance in liquid exiting)
0+50x1-60-60x0+10
Aim: To test the significant relationship between the accounting ratios of operating management and standard ideal ratios. Null Hypothesis(H 0 ) : There is no significa
Consider R be a relation from A to B, that is, take R A Χ B. Then Domain R = {a: a € A, (a, b) € R for any b € B} i.e. domain of R is the set of all the first components of
If the areas of three adjacent faces of cuboid are x, y, z respectively, Find the volume of the cuboids. Ans: lb = x , bh = y, hl = z Volume of cuboid = lbh V 2 = l 2 b 2
Extreme Value Theorem : Assume that f ( x ) is continuous on the interval [a,b] then there are two numbers a ≤ c, d ≤ b so that f (c ) is an absolute maximum for the function and
Two angles are supplementary. The evaluate of one is 30 more than twice the measure of the other. Determine the measure of the larger angle. a. 130° b. 20° c. 50° d. 70
If secA= x+1/4x, prove that secA+tanA=2x or 1/2x. Ans: Sec? = x + 1/4x ⇒ Sec 2 ? =( x + 1/4x) 2 (Sec 2 ?= 1 + Tan 2 ?) Tan 2 ? = ( x +
Triangle Treat is the page name. I don''t know the answer for it, can someone give it to me?
Mike sells on the average 15 newspapers per week (Monday – Friday). Find the probability that 2.1 In a given week he will sell all the newspapers [7] 2.2 In a given day he will sel
L'Hospital's Rule Assume that we have one of the given cases, where a is any real number, infinity or negative infinity. In these cases we have, Therefore, L'H
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd