Mixing problems, Mathematics

Assignment Help:

In these problems we will begin with a substance which is dissolved in a liquid. Liquid will be entering as well as leaving a holding tank. The liquid entering the tank may or may not hold more of the substance dissolved into it. Liquid leaving the tank will of course comprise the substance dissolved in it. If Q (t) provides the amount of the substance dissolved into the liquid in the tank at any time t we need to develop a differential equation that, as solved, will provide us an expression for Q(t). Remember as well that in several situations we can think of air as a liquid for the reasons of these kinds of discussions and thus we don't actually require having an actual liquid, though could instead use air like the "liquid".

The major assumption that we'll be using here is which the concentration of the substance in the liquid is uniform during the tank. Obviously it will not be the case, although if we permit the concentration to vary depending upon the location into the tank the problem turns into very difficult and will include partial differential equations that are not the focus of this course.

The most important "equation" which we'll be using to model this situation is as:

Rate of change of Q(t)   = Rate at that Q(t) enters the tank - Rate at that Q(t) exits the tank

Here,

Rate of change of Q(t) = dQ/dt = Q'(t)

Rate at that Q(t) enters the tank= (flow rate of liquid entering) x (concentration of substance in liquid entering

 Rate at that Q(t) exits the tank = (flow rate of liquid exiting) x (concentration of substance in liquid exiting)


Related Discussions:- Mixing problems

Proof of root test - sequences and series, Proof of Root Test  Firstly...

Proof of Root Test  Firstly note that we can suppose without loss of generality that the series will initiate at n = 1 as we've done for all our series test proofs.  As well n

Circles - common polar coordinate graphs, Circles - Common Polar Coordinate...

Circles - Common Polar Coordinate Graphs Let us come across at the equations of circles in polar coordinates. 1. r = a . This equation is saying that there is no matter

Characteristic, mention the characteristic of mathematic

mention the characteristic of mathematic

Sketch the direction field for the differential equation, Sketch the direct...

Sketch the direction field for the subsequent differential equation. Draw the set of integral curves for this differential equation. Find out how the solutions behave as t → ∞ and

Lognormal distribution, The Lognormal Distribution If ln(X) is a normal...

The Lognormal Distribution If ln(X) is a normally distributed random variable, then X is said to be a lognormal variable. If P1, P2, P3, ... are the prices of a scrip in per

Data editing, how to remove wild points in a data set...

how to remove wild points in a data set...

Identify the children strategies to solve maths problems, Here are four pro...

Here are four problems. Four children solved one problem each, as given below. Identify the strategies the children have used while solving them. a) 8 + 6 = 8 + 2 + 4 = 14 b)

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd