Minimizing the sum of two distances, Mathematics

Assignment Help:

 The value of y that minimizes the sum of the two distances from (3,5) to (1,y) and from (1,y) to (4,9) can be written as a/b where a and b are coprime positive integers. Find a+b.


Related Discussions:- Minimizing the sum of two distances

Calculus, The law of cosines can only be applied to acute triangles. Is thi...

The law of cosines can only be applied to acute triangles. Is this true or false?

Problem solving for andre, Problem solving for andre A can of powdered ...

Problem solving for andre A can of powdered milk and a can of evaporated milk cost Php 83.90 together. Two cans of evaporated milk and a can of powdered milk cost Php 118.05

Calculate the profit of company, Company A and Company B have spent a lot o...

Company A and Company B have spent a lot of money on research to develop a cure for the common cold. Winter is approaching and there is certainly going to be a lot of demand for th

Engg maths, How to get assignment to solve and earn money

How to get assignment to solve and earn money

Which team should get the ball at the beginning, Why is tossing a coin cons...

Why is tossing a coin considered to be a fair way of deciding which team should get the ball at the beginning of a foot ball match? Ans: equally likely because they are mutual

Territories never was a venitian possesion, Which of those territories neve...

Which of those territories never was a Venitian possesion? Cyprus Morea Crete Sicily

Initial value problem, An IVP or Initial Value Problem is a differential eq...

An IVP or Initial Value Problem is a differential equation with an appropriate number of initial conditions. Illustration 3 : The subsequent is an IVP. 4x 2 y'' + 12y' +

Evaluate the measure of the larger angle, Two angles are complementary. The...

Two angles are complementary. The calculate of one angle is four times the measure of the other. Evaluate the measure of the larger angle. a. 36° b. 72° c. 144° d. 18°

Managment Science, Classify models based on the degree of their abstraction...

Classify models based on the degree of their abstraction, and provide some examples of such models.

Lora

3/29/2013 3:46:31 AM

the minimum distance of the points from (1,y) is the distance from the intersection of their perpendicular bisectors to the line x=1
hence slope of perpendicular bisector=> -4=2y-14 / 2x -7
                                                           => 8x + 2y = 42.
putting x=1,y=17,
hence a+b= 17 +1 =18 (ANS).

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd