Metric space, Mathematics

Assignment Help:

Assume that (X, d) is a metric space and let (x1, : : : , xn) be a nite set of pointsof X. Elustrate , using only the de nition of open, that the set X\(x1, : : : , xn) obtained by removing every xi from X is open in X. (Sketch a picture to get some intuition!)


Related Discussions:- Metric space

Differential equation, Find the normalized differential equation which has ...

Find the normalized differential equation which has {x, xex} as its fundamental set

Area problem, Area Problem Now It is time to start second kind of inte...

Area Problem Now It is time to start second kind of integral: Definite Integrals.  The area problem is to definite integrals what tangent & rate of change problems are to d

Jay bought twenty-five $0.37 stamps how much did he spend, Jay bought twent...

Jay bought twenty-five $0.37 stamps. How much did he spend? To ?nd how much Jay spent, you must multiply the cost of each stamp ($0.37) through the number of stamps purchased (

#title, IF YOU HAVE 24 BISCUITS HOW MUCH WHOLE BISCUITS DO YOU HAVE IF YOU ...

IF YOU HAVE 24 BISCUITS HOW MUCH WHOLE BISCUITS DO YOU HAVE IF YOU SHARE FIVE BETWEEN 5 FRIENDS

Trigonometry, explain the formular for finding trigonometry

explain the formular for finding trigonometry

Indeterminate forms, Indeterminate forms Limits we specified methods fo...

Indeterminate forms Limits we specified methods for dealing with the following limits. In the first limit if we plugged in x = 4 we would get 0/0 & in the second limit

What is universal set, A non-empty set or group of which all the sets under...

A non-empty set or group of which all the sets under concern are subsets is known as the universal set. In any part of application of set theory, all the sets under concern might l

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd