Methods of elimination - linear systems, Algebra

Assignment Help:

Methods of elimination

Example 1 Solve out the given system of equations.

x - 2 y + 3z = 7

2 x + y + z = 4

-3x + 2 y - 2 z = -10

Solution

We will try and find values of x, y, and a z which will satisfy all three equations at the same time.  We are going to utilizes elimination to remove one of the variables from one of the equations & two of the variables from another of the equations. The cause for doing this will be clear once we've in fact done it.

The elimination method in this case will work a bit differently than in two equations.  As with two equations we will multiply as several equations as we have to so that if we start adding up pairs of equations we can eliminate one of the variables.

In this case it seems like if we multiply the second equation by two it will be quite simple to eliminate the y term from the second & third equation by adding the first equation to both of them.  Thus, let's first multiply the second equation by two.

1294_Methods of elimination - Linear Systems.png

Now, along with this new system we will replace the second equation along with the total of the first & second equations and we will replace the third equation along with the total first and third equations.

Following is the resulting system of equations.

x - 2 y + 3z = 7

5x+ 5z =15

-2 x + z = -3

Thus, we've eliminated one of the variables from two of the equations.  Now we have to eliminate either x or z from either the second equations or third equations. Again, we will utilize elimination to do this. In this we will multiply the third equation by -5 as this will let us to eliminate z from this equation by adding the second onto is.

1071_Methods of elimination - Linear Systems1.png

Now, replace the third equation along with the sum of the second equation & third equation.

x - 2 y + 3z = 7

5x+ 5z = 15

15x = 30

Now, at this instance notice that the third equation can be rapidly solved to determine that x = 2 .  Once we know this we can plug it into the second equation and that will give us an equation which we can solve out for z as follows.

5 ( 2) + 5z = 15

10 + 5z = 15

5z = 5

z = 1

At last, we can substitute both x & z into the first equation that we can use to solve for y. Following is that work.

2 - 2 y + 3 (1) = 7

-2 y + 5 = 7

-2 y = 2

y = -1

Hence, the solution to this system is x = 2 , y = -1 and z = 1.

That was a fair amount of work & in this case there was even less work than normal since in each of the case we only had to multiply a single equation to let us to eliminate variables.

In the previous example we did was use the method of elimination till we could start solving for the variables & then just back substitute known values of variables into previous equations to determine the remaining unknown variables.


Related Discussions:- Methods of elimination - linear systems

Word problems, Five star coffee charges a 40 dollar start up fee and then 8...

Five star coffee charges a 40 dollar start up fee and then 8 dollars per month. Custom coffee company charges a 25 dollar start up fee and 12.50 dollars per month. In which time fr

Example of linear equations, In a certain Algebra class there is a total 35...

In a certain Algebra class there is a total 350 possible points. These points come through 5 homework sets which are worth 10 points each and 3 hour exams that are worth 100 points

College algebra, how to solve the sum of a polynomials

how to solve the sum of a polynomials

Pi, approximate pi to the nearest one thousandths1

approximate pi to the nearest one thousandths1

Reflections, The last set of transformations which we're going to be lookin...

The last set of transformations which we're going to be looking at in this section isn't shifts, but in spite of they are called reflections & there are two of them. Reflection

Graphing functions, Now we need to discuss graphing functions. If we recall...

Now we need to discuss graphing functions. If we recall from the earlier section we said that f ( x ) is nothing more than a fancy way of writing y. It means that already we kno

Finding zeroes of a polynomial, Finding Zeroes of a polynomial The belo...

Finding Zeroes of a polynomial The below given fact will also be useful on occasion in determining the zeroes of a polynomial. Fact If P (x) is a polynomial & we know t

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd