Methods for doing integral, Mathematics

Assignment Help:

There are really three various methods for doing such integral.

Method 1:

This method uses a trig formula as,

 ∫sin(x) cos(x) dx = ½ ∫sin(2x) dx = -(1/4) cos(2x) + c

Method 2:

This method uses the substitution as,

u = cos(x)                                                         du = - sin(x)dx

∫sin(x) cos(x) dx = -∫ u du = -½ u2 + c2 = -(1/2) cos2(x) + c2

Method 3:

Now there is another substitution which could be done here as,

u = sin (x)                                                        du = cos (x)dx

∫sin(x) cos(x) dx = ∫ u du = ½ u2 + c3 = (1/2) sin2(x) + c3

Therefore, we've found three various answer each with a different constant of integration.  Though, as per the fact above these three answers must only be different by a constant because they all have similar derivative.

Actually they do only be different by a constant. We will require the following trig formulas to prove that.

cos (2x) = cos2(x) - sin2(x)                               cos2(x) + sin2(x) = 1

Start with the solution from the first method and utilize the double angle formula as above.

-(1/4) (cos2(x) - sin2(x)) + c1

Here, from the second identity above we contain,

-(1/4) (cos2(x) - (1 - cos2(x))) + c1 = -(1/4) (2cos2(x) - 1) + c1

= -(1/2) cos2(x) + (¼) + c1

It is then answer we found from the second method along with a slightly differ constant. Though,

c2 = ¼ + c1

We can do a same manipulation to find the answer from the third method as given. Again, starting with the solution from the first method utilize the double angle formula and after that substitute in for the cosine in place of the sine using,

cos2(x) = 1 - sin2(x)

Doing this provides,

-(1/4)( 1 - sin2(x)) - sin2(x) + c1 = -(1/4)(1 - 2 sin2(x)) + c1

 = (1/2) sin2(x) - (¼) + c1

it is the answer from the third method along with a different constant and again we can associate the two constants with,

c3 =- (¼) + c1

Therefore, what have we learned here? Hopefully we have seen that constants of integration are significant and we cannot forget about them. We frequently don't work with them in a Calculus I course, until now without a good understanding of them we would be hard pressed to know how integration methods differ and apparently make different answers.


Related Discussions:- Methods for doing integral

Dividing whole numbers, Dividing Whole Numbers: Example: Divide 3...

Dividing Whole Numbers: Example: Divide 347 by 5. Solution:                      Beginning from the left of the dividend, the divisor is divided into the

Analytical geometry, convert the equation 4x^2+4y^2-4x-12y+1=0 to standard ...

convert the equation 4x^2+4y^2-4x-12y+1=0 to standard form and determine the center and radius of the circle. sketch the graph.

Product and quotient rule, Product and Quotient Rule : Firstly let's se...

Product and Quotient Rule : Firstly let's see why we have to be careful with products & quotients.  Assume that we have the two functions f ( x ) = x 3   and g ( x ) = x 6 .

Polar to cartesian conversion formulas, Polar to Cartesian Conversion Formu...

Polar to Cartesian Conversion Formulas x = r cos Θ y = r sin Θ Converting from Cartesian is more or less easy.  Let's first notice the subsequent. x 2 + y 2   = (r co

Find regular grammar for given regular expression, find regular grammar for...

find regular grammar for the following regular expression: a(a+b)*(ab* +ba*)b

Trigonometry, can you explain it to me please

can you explain it to me please

Limits, evaluate limit as x approaches 0 (x squared times sin (1/x)

evaluate limit as x approaches 0 (x squared times sin (1/x)

Geometry, how to do proving of rectilinear figures?..

how to do proving of rectilinear figures?..

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd