Methods for doing integral, Mathematics

Assignment Help:

There are really three various methods for doing such integral.

Method 1:

This method uses a trig formula as,

 ∫sin(x) cos(x) dx = ½ ∫sin(2x) dx = -(1/4) cos(2x) + c

Method 2:

This method uses the substitution as,

u = cos(x)                                                         du = - sin(x)dx

∫sin(x) cos(x) dx = -∫ u du = -½ u2 + c2 = -(1/2) cos2(x) + c2

Method 3:

Now there is another substitution which could be done here as,

u = sin (x)                                                        du = cos (x)dx

∫sin(x) cos(x) dx = ∫ u du = ½ u2 + c3 = (1/2) sin2(x) + c3

Therefore, we've found three various answer each with a different constant of integration.  Though, as per the fact above these three answers must only be different by a constant because they all have similar derivative.

Actually they do only be different by a constant. We will require the following trig formulas to prove that.

cos (2x) = cos2(x) - sin2(x)                               cos2(x) + sin2(x) = 1

Start with the solution from the first method and utilize the double angle formula as above.

-(1/4) (cos2(x) - sin2(x)) + c1

Here, from the second identity above we contain,

-(1/4) (cos2(x) - (1 - cos2(x))) + c1 = -(1/4) (2cos2(x) - 1) + c1

= -(1/2) cos2(x) + (¼) + c1

It is then answer we found from the second method along with a slightly differ constant. Though,

c2 = ¼ + c1

We can do a same manipulation to find the answer from the third method as given. Again, starting with the solution from the first method utilize the double angle formula and after that substitute in for the cosine in place of the sine using,

cos2(x) = 1 - sin2(x)

Doing this provides,

-(1/4)( 1 - sin2(x)) - sin2(x) + c1 = -(1/4)(1 - 2 sin2(x)) + c1

 = (1/2) sin2(x) - (¼) + c1

it is the answer from the third method along with a different constant and again we can associate the two constants with,

c3 =- (¼) + c1

Therefore, what have we learned here? Hopefully we have seen that constants of integration are significant and we cannot forget about them. We frequently don't work with them in a Calculus I course, until now without a good understanding of them we would be hard pressed to know how integration methods differ and apparently make different answers.


Related Discussions:- Methods for doing integral

Decision trees illustration, A company is considering whether to enter a ve...

A company is considering whether to enter a very competitive market. In case company decided to enter in market this must either install a new forging process or pay overtime wages

Quadratic equation whose roots are real, Write the quadratic equation whose...

Write the quadratic equation whose roots are real and non conjugate Ans)  x^2-x+6=0 ...roots are real and non conjugate

Hierarchical multiple regression, A group of children who lived near a lead...

A group of children who lived near a lead smelter in El Paso, Texas, were identified and their blood levels of lead were measured. An exposed group of 46 children were identified w

Proportions, bananas are on sale for 3 pounds for $2. At that price how man...

bananas are on sale for 3 pounds for $2. At that price how many pounds can you buy for $22

Expressions, how do you solve expressions

how do you solve expressions

Share and divivdend, i m making a project on share and dividend. will u pls...

i m making a project on share and dividend. will u pls give the all of 10pages information ?

Fundamental sets of solutions, The time has at last come to describe "nice ...

The time has at last come to describe "nice enough". We've been using this term during the last few sections to explain those solutions which could be used to form a general soluti

Product moment coefficient (r), Product Moment Coefficient (r) ...

Product Moment Coefficient (r) This gives an indication of the strength of the linear relationship among two variables.                                     N

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd