Methods for doing integral, Mathematics

Assignment Help:

There are really three various methods for doing such integral.

Method 1:

This method uses a trig formula as,

 ∫sin(x) cos(x) dx = ½ ∫sin(2x) dx = -(1/4) cos(2x) + c

Method 2:

This method uses the substitution as,

u = cos(x)                                                         du = - sin(x)dx

∫sin(x) cos(x) dx = -∫ u du = -½ u2 + c2 = -(1/2) cos2(x) + c2

Method 3:

Now there is another substitution which could be done here as,

u = sin (x)                                                        du = cos (x)dx

∫sin(x) cos(x) dx = ∫ u du = ½ u2 + c3 = (1/2) sin2(x) + c3

Therefore, we've found three various answer each with a different constant of integration.  Though, as per the fact above these three answers must only be different by a constant because they all have similar derivative.

Actually they do only be different by a constant. We will require the following trig formulas to prove that.

cos (2x) = cos2(x) - sin2(x)                               cos2(x) + sin2(x) = 1

Start with the solution from the first method and utilize the double angle formula as above.

-(1/4) (cos2(x) - sin2(x)) + c1

Here, from the second identity above we contain,

-(1/4) (cos2(x) - (1 - cos2(x))) + c1 = -(1/4) (2cos2(x) - 1) + c1

= -(1/2) cos2(x) + (¼) + c1

It is then answer we found from the second method along with a slightly differ constant. Though,

c2 = ¼ + c1

We can do a same manipulation to find the answer from the third method as given. Again, starting with the solution from the first method utilize the double angle formula and after that substitute in for the cosine in place of the sine using,

cos2(x) = 1 - sin2(x)

Doing this provides,

-(1/4)( 1 - sin2(x)) - sin2(x) + c1 = -(1/4)(1 - 2 sin2(x)) + c1

 = (1/2) sin2(x) - (¼) + c1

it is the answer from the third method along with a different constant and again we can associate the two constants with,

c3 =- (¼) + c1

Therefore, what have we learned here? Hopefully we have seen that constants of integration are significant and we cannot forget about them. We frequently don't work with them in a Calculus I course, until now without a good understanding of them we would be hard pressed to know how integration methods differ and apparently make different answers.


Related Discussions:- Methods for doing integral

Explain lobachevskian geometry and riemannian geometry, Explain Lobachevski...

Explain Lobachevskian Geometry and Riemannian Geometry ? Nineteenth century mathematician Nicolai Lobachevsky assumed that the summit angles of a Saccheri quadrilateral are ac

Probability, One coin is tossed thrice. what will be the probability of get...

One coin is tossed thrice. what will be the probability of getting neither 3 heads nor 3 tails

Optimization, Optimization is required in situations that frequentl...

Optimization is required in situations that frequently arise in finance and other areas. Organizations would like to maximize their profits or minimize thei

Michael has 16 cds how many cds does kathleen have, Michael has 16 CDs. Th...

Michael has 16 CDs. This is four more than twice the amount that Kathleen has. How many CDs does Kathleen have? Let x = the number of CDs Kathleen has. Four more than twice th

Calculate the probability, Data collected from the STATS 10x class survey o...

Data collected from the STATS 10x class survey one semester included responses to questions on the number of different sexual partners and on the number of pairs of shoes the stude

MATLAB, program of curve revolve and create a surface

program of curve revolve and create a surface

Negative function , Negative function : Several functions are not positive...

Negative function : Several functions are not positive however.  Consider the case of f (x ) =x 2 - 4 on [0,2].  If we utilizes n = 8 and the midpoints for the rectangle height w

Working definition of continuity , "Working" definition of continuity ...

"Working" definition of continuity A function is continuous in an interval if we can draw the graph from beginning point to finish point without ever once picking up our penci

Incircle, ab=8cm,bc=6cm,ca=5cm draw an incircle.

ab=8cm,bc=6cm,ca=5cm draw an incircle.

Analysis and optimization, 1. In an in finite horizon capital/consumption m...

1. In an in finite horizon capital/consumption model, if kt and ct are the capital stock and consumption at time t, we have f(kt) = ct+kt+1 for t ≥ 0 where f is a given production

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd