Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Metal-Oxide-Semiconductor Structure
A traditional metal-oxide-semiconductor abbreviated as MOS structure is acquired by growing a layer of silicon dioxide (SiO2) on top of a silicon substrate and depositing a layer of metal or polycrystalline silicon (the latter is typically used). Since the silicon dioxide is a dielectric material, its structure is equal to a planar capacitor, along with one of the electrodes replaced by a semiconductor.
While a voltage is applied across a MOS structure, it changes the distribution of charges in the semiconductor. If we refer a P-type semiconductor (along with NA the density of acceptors, p the density of holes; p = NA in neutral bulk), a positive (+ive) voltage, VGB, from gate to body (see figure) forms a depletion layer by forcing the positively charged holes away from the gate-insulator or semiconductor interface, leaving exposed a carrier-free region of immobile, negatively charged acceptor ion. If VGB is sufficiently high, a high concentration of negative charge carriers forms in an inversion layer situated in a thin layer next to the interface in between the semiconductor and the insulator. Not like the MOSFET, in which the inversion layer electrons are supplied fast from the source or drain electrodes, in the MOS capacitor they are generated much more slowly by thermal generation by carrier generation and recombination centers in the depletion region.
Figure: MOSFET structure and channel formation
Usually, the gate voltage at which the volume density of electrons in the inversion layer is similar as the volume density of holes in the body is called the threshold voltage. This structure along with p-type body is the basis of the N-type MOSFET that needs the addition of an N-type source and drain regions.
what is equalizer ring
Q. Determine the voltages Vx using voltage division and equivalent resistor reductions for the circuits shown in Figure.
Q. Use a 4-to-1multiplexer to simulate the following: (a) NAND logic function. (b) EXCLUSIVE-OR logic function. (c) Σ m (1, 2, 4).
With respect to serial communication define the half duplex. Half Duplex Transmission: A channel of half duplex can send and receive, but not at same time. It's like a one-la
Refer to Figure 100. Assume MKS units. Given: R1= 4, R2=14, R3= 9, I4= 8, I5= 7. Determine: Ieq, Req, and V3.
..Explain mixedd storage oscilloscope with neat diagram,
Two stations, located on mountain tops 40 km apart, communicate with each other using two identical paraboloidal antennas with pencil beam- width of 1°, aperture ef?ciency of 0.8,
Q. Which of the 3 transistor configuration is best to use in cascade if maximum voltage gain is to be realized? The common collector configuration is not used for intermediate
Ask question #how to construct thunderstrom detector with circuit breaker.
The material with lowest resistivity is (A) Constantan. (B) Silver. (C) manganin. (D) nichrome. Ans: The material with lowest resist
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd