Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Metal-Oxide-Semiconductor Structure
A traditional metal-oxide-semiconductor abbreviated as MOS structure is acquired by growing a layer of silicon dioxide (SiO2) on top of a silicon substrate and depositing a layer of metal or polycrystalline silicon (the latter is typically used). Since the silicon dioxide is a dielectric material, its structure is equal to a planar capacitor, along with one of the electrodes replaced by a semiconductor.
While a voltage is applied across a MOS structure, it changes the distribution of charges in the semiconductor. If we refer a P-type semiconductor (along with NA the density of acceptors, p the density of holes; p = NA in neutral bulk), a positive (+ive) voltage, VGB, from gate to body (see figure) forms a depletion layer by forcing the positively charged holes away from the gate-insulator or semiconductor interface, leaving exposed a carrier-free region of immobile, negatively charged acceptor ion. If VGB is sufficiently high, a high concentration of negative charge carriers forms in an inversion layer situated in a thin layer next to the interface in between the semiconductor and the insulator. Not like the MOSFET, in which the inversion layer electrons are supplied fast from the source or drain electrodes, in the MOS capacitor they are generated much more slowly by thermal generation by carrier generation and recombination centers in the depletion region.
Figure: MOSFET structure and channel formation
Usually, the gate voltage at which the volume density of electrons in the inversion layer is similar as the volume density of holes in the body is called the threshold voltage. This structure along with p-type body is the basis of the N-type MOSFET that needs the addition of an N-type source and drain regions.
Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4
Explain Overhead Lines and Transformers? Overhead lines absorb reactive power when fully loaded. A line with a current I A, a line reactance of X L ?/phase absorbs I 2 X L V
Transmission Through a LiNb0 3 Plate Examine the transmission of an unpolarized He-Ne laser beam (?o= 633 nm) normally incident on a LiNb0 3 plate (ne = 2.29, no = 2.20) of thickn
Both GSM and DECT use GMSK, but with different Gaussian filters (BGT = 0.3 in GSM, BGT = 0.5 in DECT). What are the advantages of having a larger bandwidth time product? Why is the
FIFO (First in First Out) stack is used in 8086.In this type of Stack the first stored information is retrieved first.
Q. The power gain of an antenna is 10,000. If its input power is 1 kW, calculate the maximum radiation intensity that it can generate.
100
Q. A four-pole dc generator is lap wound with 326 armature conductors. It runs at 650 r/min on full load, with an induced voltage of 252 V. If the bore of themachine is 42 cmin dia
i am going to make a sinusoidal inverter as my final year project kindly help me in this regard.How can i make this project?
what can I do to sharpen the roll off and flatten the passband of a finite impulse response filter
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd