Mechanical vibrations, Mathematics

Assignment Help:

This time we are going to take a look at an application of second order differential equations. It's now time take a look at mechanical vibrations. In exactly we are going to look at a mass which is hanging from a spring.

Vibrations can arise in pretty much all branches of engineering and thus what we're going to be doing now can be simply adapted to other situations, generally with just a change in notation.

Let's find the situation setup. We are going to begin with a spring of length l, termed as the natural length, and we're going to hook an object along with mass m up to this. While the object is attached to the spring, it will stretch a length of L. We will identify it the equilibrium position the position of the center of gravity for the object like this hangs on the spring along with no movement.

There is sketch given below, of the spring with and without the object attached to this.

1446_Mechanical Vibrations.png

As denoted in the above sketch we are going to suppose that all velocities, forces and displacements in the downward direction will be positive. All velocities, forces and displacements in the upward direction will be negative.

Also, as demonstrated in the sketch above, we will measure all displacement of the mass by its equilibrium position. Thus, the u = 0 position will corresponding to the center of gravity for the mass as this hangs on the spring and is at rest, which is no movement.

Here, we need to develop a differential equation which will provide the displacement of the object at any time t.  Firstly, recall Newton's Second Law of Motion.

ma = F

In this case we will use the second derivative of the displacement, u, for the acceleration and so Newton's Second Law turns into,

mu′′ = F (t, u, u′)

We now require determining all the forces that will act on the object. There are four forces which we will suppose act upon the object. Two, will all the time act upon the object and two which may or may not act on the object.


Related Discussions:- Mechanical vibrations

Unitary method, who ,why and when discovered unitary method

who ,why and when discovered unitary method

How many ways are there to seat these children, Question: (a) Suppose ...

Question: (a) Suppose that a cookie shop has four different kinds of cookies. Assuming that only the type of cookie, and not the individual cookies or the order in which they

Show that of all right triangles inscribed in a circle, Show that of all ri...

Show that of all right triangles inscribed in a circle, the triangle with maximum perimeter is isosceles.

Cylinder, #question Show that the enveloping cylinder of the conicoid ax 2 ...

#question Show that the enveloping cylinder of the conicoid ax 2 + by 2 + cz 2 = 1 with generators perpendicular to the z-axis meets the plane z = 0 in parabolas

Set builder notation, A={2,3,5,7,11} B={1,3,5,7,9} C={10,20,30,40,......100...

A={2,3,5,7,11} B={1,3,5,7,9} C={10,20,30,40,......100} D={8,16,24,32,40} E={W,O,R,K} F={Red,Blue,Green} G={March,May} H={Jose,John,Joshua,Javier} I={3,6,9,12,15}

Decision-making under conditions of risk, Decision-making Under Conditions ...

Decision-making Under Conditions of Risk With decision-making under conditions of risk all possible states of nature are known and the decision maker has sufficient knowledge

Why is the steepness of a curve partially calculate, Can you explain why is...

Can you explain why is the steepness of a curve partially calculated by the units of measurement?

Transportation problem, matlab code for transportation problem solved by vo...

matlab code for transportation problem solved by vogel''s approximation method

Multistage sampling, Multistage sampling Multistage sampling is similar...

Multistage sampling Multistage sampling is similar to stratified sampling except division is done on geographical/location basis, for illustration a country can be divided into

Definite integral, from 0->1: Int sqrt(1-x^2) Solution) I=∫sqrt(1-x 2 ...

from 0->1: Int sqrt(1-x^2) Solution) I=∫sqrt(1-x 2 )dx = sqrt(1-x 2 )∫dx - ∫{(-2x)/2sqrt(1-x 2 )}∫dx ---->(INTEGRATION BY PARTS)        = x√(1-x 2 ) - ∫-x 2 /√(1-x 2 ) Let

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd