Mechanical vibrations, Mathematics

Assignment Help:

This time we are going to take a look at an application of second order differential equations. It's now time take a look at mechanical vibrations. In exactly we are going to look at a mass which is hanging from a spring.

Vibrations can arise in pretty much all branches of engineering and thus what we're going to be doing now can be simply adapted to other situations, generally with just a change in notation.

Let's find the situation setup. We are going to begin with a spring of length l, termed as the natural length, and we're going to hook an object along with mass m up to this. While the object is attached to the spring, it will stretch a length of L. We will identify it the equilibrium position the position of the center of gravity for the object like this hangs on the spring along with no movement.

There is sketch given below, of the spring with and without the object attached to this.

1446_Mechanical Vibrations.png

As denoted in the above sketch we are going to suppose that all velocities, forces and displacements in the downward direction will be positive. All velocities, forces and displacements in the upward direction will be negative.

Also, as demonstrated in the sketch above, we will measure all displacement of the mass by its equilibrium position. Thus, the u = 0 position will corresponding to the center of gravity for the mass as this hangs on the spring and is at rest, which is no movement.

Here, we need to develop a differential equation which will provide the displacement of the object at any time t.  Firstly, recall Newton's Second Law of Motion.

ma = F

In this case we will use the second derivative of the displacement, u, for the acceleration and so Newton's Second Law turns into,

mu′′ = F (t, u, u′)

We now require determining all the forces that will act on the object. There are four forces which we will suppose act upon the object. Two, will all the time act upon the object and two which may or may not act on the object.


Related Discussions:- Mechanical vibrations

Karatsubas algorithm, Consider the following two polynomials in F 17 [x] ...

Consider the following two polynomials in F 17 [x]   (a) Use Karatsuba's algorithm, by hand, to multiply these two polynomials. (b) Use the FFT algorithm, by hand, to

Adding & subtracting i guess, Jack and his mother paid $11.50 for tickets t...

Jack and his mother paid $11.50 for tickets to the movies, and adults tickets cost $4.50 more than a child ticket what was the cost of each ticket?

Complementary addition model, E1) How is the 'comparison model' different...

E1) How is the 'comparison model' different from the 'complementary addition model'? E2) Create one word problem related to the children's world for each of the 4 models liste

Graphing linear equtions, Determine whether each equation is a linear equat...

Determine whether each equation is a linear equation. If yes, write the equation in standard form. y=2x+5

Diffrence between rational and irrational numbers, Q. Diffrence between Rat...

Q. Diffrence between Rational and Irrational Numbers? Ans. A number which is not rational is called irrational. The word "irrational" sounds not quite right...as though th

H, 6987+746-212*7665

6987+746-212*7665

What is the meaning of the f-statistic and f test, You are given the follow...

You are given the following regression results estimating the demand for widgets based on time series data for the past 40 months. Q t = 2.5 - 0.3 x P t + 12 x M t Where Q

Pre-algebra, How do you solve a table to get the function rule?

How do you solve a table to get the function rule?

..compound intrest, tell me about the software of compound intrest?

tell me about the software of compound intrest?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd