Measure phase angle by using an oscilloscope, Electrical Engineering

Assignment Help:

1. Introduction:

Theory:  Phase angle is defined as the number of degrees separating two sine waves of the same frequency. The Phase shift is defined as any change that occurs in the phase of one quantity, or in the phase difference between two or more quantities.

For infinitely long sinusoids, a change in Θ is the same as a shift in time, such as a time-delay.  If x (t) is delayed (time-shifted) by 1/4   of its cycle, it becomes:

1070_measure phase angle by using an oscilloscope.png

whose "phase" is now  Θ- (Π / 2)  It has been shifted by (Π / 2) radians.

Material Required: Oscilloscope, frequency generator, connecting wires, resistor, capacitor, potentiometer, multimeter.

Description and Aim: To measure phase angle by using an oscilloscope. The phase angle between two waveforms is calculated by ensuring that they are of same frequency. The amplitude can differ for both these waveforms. An input waveform will be passed through circuit which may make some changes in the phase of this waveform. Hence, the phase angle between the input and output waveforms is measured using the oscilloscope where one channel displays the reference waveform and other channel displays the second signal.

2. Method:

Step 1) First, make a circuit using a capacitor and a resistor. The potentiometer can also be used and turn it fully otherwise. The capacitor creates a phase shift in the waveform passing through it.

Step 2) Connect generator to phase angle circuit block. Using an oscilloscope, set generator for a sine wave output 6Vpk-pk at 1000 Hz.

Step 3) Connect channel 1 probe to input of the generator and channel 2 probe to output across C1. Ensure that oscilloscope trigger source control is set to channel 1. Switch from the vertical mode to ALT. Set ground references of both the channel to the graticule line. The phase angle between channel 1 and channel 2 is approximately zero at this moment.

Step 4) Slowly turn the potentiometer R2 completely clockwise. It makes the phase shift to right direction.

Step 5) Switch vertical mode to channel 1 and adjust time base and variable time base controls on oscilloscope so that one cycle of waveform is having exactly 8 divisions.

Step 6) Calculate phase angle between the two waveforms.

3. Results:

Frequency of waveform = 1000 Hz

V(pk-pk) = 6V

No of horizontal divisions for one cycle of waveforms = 8

Measure of one division = 45°

Phase angle  = 8 X 45° /  5  = 360° / 5   = 72°

(how did u get 5 in above line...mention that here)

4. Discussion:

Phase measurement of a waveform using oscilloscope is done. Prime source of error is resolution error, which is reduced by ensuring phase crossings align with ticks of oscilloscope.  If this experiment needs to be repeated for higher frequencies time step has to be properly changed to avoid quantization error.


Related Discussions:- Measure phase angle by using an oscilloscope

Applied mechanics, State whether Lamis theorem is applicable for more than ...

State whether Lamis theorem is applicable for more than three coplanar concurrent forces?

RC phase shift oscillator, For the RC phase-shift oscillator if c=1pF and R...

For the RC phase-shift oscillator if c=1pF and R=10K determine the value of Rf

#titleElectromagnetic Induction, Hello, I have some questions pertaining t...

Hello, I have some questions pertaining to electromagnetic induction. Could you please give me a hand? Thanks. If we increase the speed of the bar magnet slowly from 0 to 8, and

Reporting requirements for distribution licensees, Reporting Requirements f...

Reporting Requirements for Distribution Licensees Distribution licensees are needs to provide operational reports, commercial reports, financial reports, energy audit reports

What do you mean by common collector configuration, Q. What do you mean by ...

Q. What do you mean by Common collector configuration? Common collector configuration:In this circuit the collector is common to both the input and the output.Such a configurat

Find the modulated signal in each case, Let the message signal m(t) = α cos...

Let the message signal m(t) = α cos (2πf m t) be used to either frequency-modulate or phase- modulate the carrier Ac cos(2πf c t). Find the modulated signal in each case.

Induction motor, A 100hp,460v,8pole,60hz,star connected 3phase IM runs at 8...

A 100hp,460v,8pole,60hz,star connected 3phase IM runs at 891rpm under full load what is the speed of the rotor field relative to i)rotor structure ii)stator rotating field

Bias circuit requirements, Bias circuit requirements: Signal requirem...

Bias circuit requirements: Signal requirements for Class A amplifiers The Q-point is placed thus the transistor stays in active mode (does not shift to operation in the s

Determine the low-pass filter and amplitude spectra, Q. Let a square-wave v...

Q. Let a square-wave voltage source having an amplitude of 5V, a frequency of 1 kHz, a pulse width of 0.5 ms, and an internal source resistance of 50  be applied to a resistive lo

Show the equivalent nor realizations of basic not, (a) Show the equivalent ...

(a) Show the equivalent NOR realizations of the basic NOT, OR, and AND gates. (b) Show the equivalent NAND realization of the basic NOT, AND, and OR gates.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd