Mean value theorem function, Mathematics

Assignment Help:

Mean Value Theorem : Suppose f (x) is a function which satisfies both of the following.

1. f ( x )is continuous on the closed interval [a,b].

2. f ( x ) is differentiable on the open interval (a,b).

Then there is a number c such that a < c < b and

f ′ (c ) = f (b ) - f ( a ) /b - a

                    Or,

f (b ) - f (a ) = f ′ (c ) (b - a )

Note as well that the Mean Value Theorem doesn't tell us what c is. Only it tells us that at least there is one number c that will satisfy the conclusion of the theorem.

Also note that if it weren't for the fact that we required Rolle's Theorem to prove it we could think of Rolle's Theorem as a special case of the Mean Value Theorem.  To illustrates that just suppose that f ( a ) = f (b ) and then the result of the Mean Value Theorem provides the result of Rolle's Theorem.

Before we see couple of examples let's think about a geometric interpretation of the Mean Value Theorem.  First define

 A = (a, f ( a )) and B = (b, f (b )) and then we know from the Mean Value theorem that there is a c such that a < c < b and that

 f ′ (c ) = f (b ) - f ( a ) /b - a

 Now, if we draw in the secant line connecting A & B then we can know that the slope of the secant line is,

                         f (b ) - f ( a ) /b - a

Similarly, if we draw in the tangent line to f ( x ) at x = c we know that its slope is f ′ (c ) .

What the Mean Value Theorem described us is that these two slopes have to be equal or in other words the secant line connecting A & B and the tangent line at x = c has to be parallel. We can illustrate this in the following sketch.

780_tanglent line.png


Related Discussions:- Mean value theorem function

Unitary method, who ,why and when discovered unitary method

who ,why and when discovered unitary method

1, 5 hockey pucks and three hockey sticks cost $23. 5 hockey pucks and 1 ho...

5 hockey pucks and three hockey sticks cost $23. 5 hockey pucks and 1 hockey stick cost $20. How much does 1 hockey puck cost?

Assumptions of interpolation and extrapolation, Assumptions The f...

Assumptions The figures known are assumed to be a normal series, that is a series without any violent, unexplained fluctuations in the values. The

In the terms of x, The length of Kara's rectangular patio can be expressed ...

The length of Kara's rectangular patio can be expressed as 2x - 1 and the width can be expressed as x + 6. In the terms of x, what is the area of her patio? Since the area of a

Square the next consecutive integer find the lesser integer, The square of ...

The square of one integer is 55 less than the square of the next consecutive integer. Find the lesser integer. Let x = the lesser integer and let x + 1 = the greater integer. T

Find the lesser of two consecutive positive even integers, Find the lesser ...

Find the lesser of two consecutive positive even integers whose product is 168. Let x = the lesser even integer and let x + 2 = the greater even integer. Because product is a k

PR Plan for Bloomington Bombers softball team, I need to come up with a PR ...

I need to come up with a PR plan for a fictitious women''s softball team. How much would something like that cost?

Solve by factorization, Solve by factorization X 2 +(a/a+b + a+b/a)x+...

Solve by factorization X 2 +(a/a+b + a+b/a)x+1 = 0 X 2 +(a/a+b + a+b/a)x+1 =>  X 2 +(a/a+b x a+b/ax + a/a+b .a+b/a) =>  X[x+a/a+b] +a+b/a[a+a*a+b]= 0 =>  X= -a

Nemeric patterns, Kelli calls her grandmother every month. Every other mont...

Kelli calls her grandmother every month. Every other month,Kelli also calls her cousin in January, how many calls will Kelli have made to her grandmother and her cousin by the end

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd