Mean value theorem function, Mathematics

Assignment Help:

Mean Value Theorem : Suppose f (x) is a function which satisfies both of the following.

1. f ( x )is continuous on the closed interval [a,b].

2. f ( x ) is differentiable on the open interval (a,b).

Then there is a number c such that a < c < b and

f ′ (c ) = f (b ) - f ( a ) /b - a

                    Or,

f (b ) - f (a ) = f ′ (c ) (b - a )

Note as well that the Mean Value Theorem doesn't tell us what c is. Only it tells us that at least there is one number c that will satisfy the conclusion of the theorem.

Also note that if it weren't for the fact that we required Rolle's Theorem to prove it we could think of Rolle's Theorem as a special case of the Mean Value Theorem.  To illustrates that just suppose that f ( a ) = f (b ) and then the result of the Mean Value Theorem provides the result of Rolle's Theorem.

Before we see couple of examples let's think about a geometric interpretation of the Mean Value Theorem.  First define

 A = (a, f ( a )) and B = (b, f (b )) and then we know from the Mean Value theorem that there is a c such that a < c < b and that

 f ′ (c ) = f (b ) - f ( a ) /b - a

 Now, if we draw in the secant line connecting A & B then we can know that the slope of the secant line is,

                         f (b ) - f ( a ) /b - a

Similarly, if we draw in the tangent line to f ( x ) at x = c we know that its slope is f ′ (c ) .

What the Mean Value Theorem described us is that these two slopes have to be equal or in other words the secant line connecting A & B and the tangent line at x = c has to be parallel. We can illustrate this in the following sketch.

780_tanglent line.png


Related Discussions:- Mean value theorem function

Find the length of the boundary and the area of the shaded, The boundary of...

The boundary of the shaded portion in the adjoining figure consists of our half-circles and two quarter-circles.  Find the length of the boundary and the area of the shaded portion

Shares and dividend, a man in rested rupee 800 is buying rupee 5 shares and...

a man in rested rupee 800 is buying rupee 5 shares and then are selling at premium of rupee 1.15. He sells all the shares.find profit

Prove that ad x af=ae x ab, ABCD is a rectangle. Δ ADE and Δ ABF are two tr...

ABCD is a rectangle. Δ ADE and Δ ABF are two triangles such that ∠E=∠F as shown in the figure. Prove that AD x AF=AE x AB. Ans:    Consider Δ ADE and Δ ABF ∠D = ∠B

Example of mixing problems, A 1500 gallon tank primarily holds 600 gallons ...

A 1500 gallon tank primarily holds 600 gallons of water along with 5 lbs of salt dissolved into it. Water enters the tank at a rate of 9 gal/hr and the water entering the tank has

Hypergeometric distribution, Hypergeometric Distribution Consider the p...

Hypergeometric Distribution Consider the previous example of the batch of light bulbs. Suppose the Bernoulli experiment is repeated without replacement. That is, once a bulb is

Relation and functions, Prove that if f and g are functions, then f interse...

Prove that if f and g are functions, then f intersect g is a function by showing f intersect g = glA A={x:g(x)=f(x)}

Why is it important the the enlightenment grew out, Why is it important the...

Why is it important the the Enlightenment grew out of the salons and other meeting places of Europe? Who was leading the charge? Why was this significant? Where there any names or

Order of Operations with Fractions, 1.)3 3/8 divided by 4 7/8 plus 3 2.)4 ...

1.)3 3/8 divided by 4 7/8 plus 3 2.)4 1/2 minus 3/4 divided by 2 3/8

Evaluate the volume of one orange, An orange has a diameter of 3 inches. Ev...

An orange has a diameter of 3 inches. Evaluate the volume of one orange. (π = 3.14) a. 9.42 in 3 b. 113.04 in 3 c. 28.26 in 3 d. 14.13 in 3 d. To determine the

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd