Mean value theorem find out all the numbers c, Mathematics

Assignment Help:

Find out all the numbers c that satisfy the conclusions of the Mean Value Theorem for the given function.

                                              f ( x ) = x3 + 2 x2 - x     on [-1, 2]

Solution : There isn't in fact a lot to this problem other than to notice as well that since f (x) is a polynomial it is continuous and differentiable both (that means the derivative exists) on the interval given. Firstly let's find out the derivative.

                                                f ′ ( x ) = 3x2 + 4x -1

Now, to determine the numbers which satisfy the conclusions of the Mean Value Theorem all we have to do is plug this into the formula specified by the Mean Value Theorem.

f ′ (c ) = f ( 2) - f ( -1) /2 - ( -1)

3c2 + 4c -1 = 14 - 2/3 = 12/3 = 4

Now, it is just a quadratic equation,

3c2 + 4c -1 = 4

3c2 + 4c - 5 = 0

 By using the quadratic formula on this we obtain,

2076_mean value.png

Thus, solving out gives two values of c.

 

c =( -4 +√76) /6 = 0.7863                      c =( -4 +√76) /6 = -2.1196

 

Notice as well that only one of these is in fact in the interval given in the problem.  That means we will exclude the second one (As it isn't in the interval). The number which we're after in this problem is c = 0.7863

Be careful to not suppose that just one of the numbers will work.  This is possible for both of them to work.

 

Facts using the Mean Value Theorem

In both of these facts we are supposing the functions are continuous & differentiable on the interval [a,b].

Fact 1

If  f ′ ( x ) = 0 for all x in an interval ( a, b ) then f ( x ) is constant on ( a, b ) .

This fact is extremely easy to prove so let's do that here. Take any two x's within the interval ( a, b ) , say x1  and x2 .  Then since f ( x )is continuous & differential on [a,b] it has to also be continuous & differentiable on [ x1 , x2 ] . It means that we can apply the Mean Value Theorem for these two values of x.  Doing this we get,

f ( x2 ) - f ( x1 ) = f ′ (c ) ( x2 - x1 )

Where x1 < c < x2 .  But by supposition f ′ ( x ) = 0 for all x in an interval ( a, b ) and therefore in specific we must have,

                                                           f ′ (c ) = 0

Putting this in the equation above gives,

f ( x2 ) - f ( x1 ) = 0     ⇒ f ( x2 ) = f ( x1 )

Now, since x1  and   x2  where any two values of x in the interval ( a, b ) we can illustrates that we ought to have f ( x2 ) = f ( x1 ) for all x1  and x2  in the interval and it is exactly what it means for a function to be a  constant on the interval and thus we've proven the fact.

Fact 2

If  f ′ ( x ) = g′ ( x ) for all x in an interval (a, b ) then in this interval we have f ( x ) =g ( x ) + c where c refer to some constant.

This fact is direct result of the fact1 and it is also easy to prove. If we first define,

                                h ( x ) = f ( x ) - g ( x )

 Then since both f (x) & g (x) are continuous & differentiable in the interval ( a, b ) then so have to be h ( x ) . Thus the derivative of h ( x ) is,

                               h′ ( x ) = f ′ ( x ) - g ′ ( x )

Though, by supposition f ′ (x) = g ′ (x) for all x in an interval ( a, b ) and therefore we ought to have that h′ ( x ) = 0 for all x in an interval ( a, b ) .  Thus, by Fact 1 h ( x ) has to be constant on the interval.

It means that we have,

h ( x ) = c

f ( x ) - g ( x ) = c

f ( x ) +g ( x ) = c

Which is what we were attempting to show.


Related Discussions:- Mean value theorem find out all the numbers c

Linear Equations, y= -3x tell if it is linear or not. our teacher wants it ...

y= -3x tell if it is linear or not. our teacher wants it graphed or something.

Calculate moving average, Calculate Moving Average The table given bel...

Calculate Moving Average The table given below represents company sales; calculate 3 and 6 monthly moving averages, for data Months Sales

find out the dimensions which will minimize, We desire to construct a box ...

We desire to construct a box whose base length is three times the base width. The material utilized to build the top & bottom cost $10/ft 2 and the material utilized to build the

Prove the parallelogram circumscribing a circle is rhombus, Prove that the ...

Prove that the parallelogram circumscribing a circle is rhombus. Ans   Given : ABCD is a parallelogram circumscribing a circle. To prove : - ABCD is a rhombus or AB

Need help , understandin rates and unitrates

understandin rates and unitrates

1, use 3/8 of a thin of paint, what fraction of the paint is left in thin (...

use 3/8 of a thin of paint, what fraction of the paint is left in thin (show work

Convergence, Assume that (xn) is a sequence of real numbers and that a, b €...

Assume that (xn) is a sequence of real numbers and that a, b € R with a is not eaqual to 0. (a) If (x n ) converges to x, show that (|ax n + b|) converges to |ax + b|. (b) Give

Find the maximum and minimum brightness values, Variable stars are ones who...

Variable stars are ones whose brightness varies periodically. One of the most visible is R Leonis; its brightness is modelled by the function where t is measured in days.

Service marketing, assignment of marketing mix on healthservices

assignment of marketing mix on healthservices

What is the square root of -i, To find sq root by the simple step... root (...

To find sq root by the simple step... root (-i)=a+ib............... and arg of -i= -pi/2 or 5pi/2

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd