Maximum slope and maximum deflection, Mechanical Engineering

Assignment Help:

Maximum slope and maximum deflection:

A simply supported beam of span l is subjected to two concentrated loads at one-third span through two supports. Discover the maximum slope & maximum deflection EI is constant.

Solution

By symmetry,

RA  = RB  = W                    ---------- . (1)

 Let a section X-X at a distance x from A,

M = W . x - W ?[x - l/3]  - W [x - 2l /3]                                -------- (2)

202_Maximum slope and maximum deflection.png

 

The equation for deflection is :

EI = d 2 y/dx2 = M = W x - W[x -(l/3) ]- W[x -(2/3)]                --------- (3)

Integrating the Equation (3),

EI (dy/ dx) = W x2/2 - (W /2)[x- (l/3)]2-  (w/2 ) [x - (2l/3) ]2 + C1         ------- (4)

EI y= W x2/6 - (W /6)[x- (l/3)]3-  (w/6 ) [x - (2l/3) ]3 + C1x +   C2         -------- (5)

 The boundary conditions :

at A,     x = 0,      y = 0  ∴  C2  = 0

It must be understood that the Equation (3), (4) & (5) pertain to the region x > 2l /3

Therefore second & third terms vanish while BC at x = 0 is used.

at B,   x = l,      y = 0

0 = W l 3/6- W /6(2l /3)3-      (W/6)(l/3)3 + C1

C1 =- W l3 /     6 [1 - 8/27 - 1/27] = W l 2/9         ----------- (6)

∴          EI (dy/dx) =    W x2/2 [x-(l/3)] 2 - (W/2) [x-(2l/3)] 2 - Wl2/9

Actually since the problem is symmetric the maximum deflection takes place in the centre.

y1C  + y2C  = y3C

θ1A  + θ2 A  = θ3 A  = θ3B

Deflection under the load, (x = l/3)  ,

EIyD  =  W/6(1/3)3 - (W l 2/9 l )×(l/3)

=          Wl3/27 (1/6 - 1) =  - 5 W l 3 / (27 × 6)

yD  = - 5 W l 3 / 162 EI                             --------- (7)

At A, (x = 0),

θA = - W l 2 / 9 EI                              ---------- (8)

At B (x = l),

            EI θB  = W l 2 /2- (W/2) (4l 2/9) -( W/2)( l 2/9) -         (W l 2/9)

                       = W l 2/18 [9 - 4 - 1 - 2] = +Wl2/9

  ∴        θ  = + W l 2/9 EI            ---------- (9)

For maximum deflection, slope is zero.

0 =       W x2 /2 -(w/2) [ x-(l/3)]2 - Wl2/9

Again note down that maximum deflection shall occur between the loads which is easily ascertained from symmetry. Though, to prove this Equation (5) is utilized and since x < 2l/3 among the loads, the third term vanishes.

⇒         0 = 9 x2  - 9 (x - l/3)2  - 2l 2

           = 9 x2  - 9 ( x2  + l 2 /9 - 2l x /3) - 2l 2

=- l 2  + 6 l x - 2l 2

6lx = 3l 2

x = l / 2                    -------- (10)

 EIy max  = (W/6)  x3  - W (x - (l /3))3 - (Wl2/9 )x

Now put x = l /2

EIy max  =  (W /6 )(l/2)3 -(w/6)((l/2)-(l/3))3 -Wl3/18

      = (w/6)((l/2)-(2l/3))3-(wl2/9)(l/2)= (wl3/6)(1/216)+(1/3)-(1/8))

= - Wl 3/6  [(1/ 8 )-(1/ 36) -(1/3) ]= - wl3/6 ((72+1-27)/216)

=          (Wl 3 /(36 × 8 × 6)) [36 - 8 - 96] = - Wl 3 (23/648)

∴ y max  = 23 Wl 3/ 648                    ------ (11)


Related Discussions:- Maximum slope and maximum deflection

Calculate change in internal energy of the gas, (a) Illustrate First Law of...

(a) Illustrate First Law of Thermodynamics for a Closed System undergoing a change of state and show that ‘Energy' is a property of the system. (b) A cylinder contains 1 m 3 of

Tempering and stabilization, Tempering and Stabilization: Tempering o...

Tempering and Stabilization: Tempering of tool steel in heat treatment is again a significant step. The quenching of such steels reasons the existence of untempered martensit

Design a remote control transmitter, You are required, as part of a small t...

You are required, as part of a small team, to design a remote controlled buggy that can be made to move forwards, backwards and from side to side. The basic buggy and motors are pr

Determine the crippling load and safe load, A hollow mild steel tube 6 m lo...

A hollow mild steel tube 6 m long 4 cm internal diameter and 6 mm thick is used as a strut with both ends hinged. Determine the crippling load and safe load taking factor of safety

Find out the number of revolution, Find out the number of revolution: ...

Find out the number of revolution: A flywheel of mass 20 kg and radius 100 mm is made to rotate at 600 RPM. Determine the KE of the flywheel. If the frictional couple at its b

Heat pump - thermodynamics, Heat Pump - thermodynamics: Heat Pump: H...

Heat Pump - thermodynamics: Heat Pump: Heat pump is reversed heat engine that removes heat from a body at low temperature and transfer heat to the body at higher temperature

Manufacturing technology, with the aid of a diagram explain electrochemical...

with the aid of a diagram explain electrochemical grinding

How can you test hardness of the prepared mould, Q. How can you test hardne...

Q. How can you test hardness of the prepared mould? Hardness test: The hardness of the prepared mould surface is tested to check the ramming density of the sand. The instrume

Process of alloy materials sampling, Q. Process of Alloy Materials Sampling...

Q. Process of Alloy Materials Sampling? The following alloy-materials require a minimum of 10% per lot representative PMI sampling. If any incorrect material is found in repres

Determine the response of the system, A force F(t) is suddenly applied to a...

A force F(t) is suddenly applied to a mass m which is supported by a spring with a constant stiffness ‘K'. After a short period of time T, the force is suddenly removed. In the mea

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd