Maximization problem, Game Theory

Assignment Help:

Two individuals (i ∈ {1, 2}) work independently on a joint project. They each independently decide how much e ort ei they put. E ort choice has to be any real number between 0 and 1 (ei ∈ [0, 1] not just 0 or 1). The cost of putting an amount of e ffort ei is n e2i/2, where n is a parameter greater or equal than 2. If individual i puts e ffort ei, then he succeeds with probability ei and fails with probability 1 - ei. The probability of success of the two agents are independent; this means that both succeed with probability e1x e2, 1 succeeds and 2 fails with probability e1 x(1 - e2), 1 fails and 2 succeeds with probability (1 - e1)e2, and both fail with probability (1 - e1)  (1 - e2).

If at least one of the individuals succeeds then, independently of who did succeed, both individuals get a payo of 1. If none of them succeeds, both individuals get 0. Therefore, each individual is a ected by the action of the other. However, individuals choose the level of e ort that maximizes their own expected utility (bene t minus cost of e ort).

(a) Write down the expected utility of individuals 1 and 2 (note that the utility of 1 depends on the e orts of 1 and 2 and the utility of 2 depends on the e orts of 1 and 2). [Hint. The expected bene t of 1 is the probability that 1 and/or 2 succeed times the payo if 1 and/or 2 succeed plus the probability that both 1 and 2 fail times the payo if both 1 and 2 fail.]

(b) Find the Nash equilibrium of this game, that is, the optimal level of e ort. Find the expected utility of each individual in equilibrium (use the rst-order condition and make sure that the second-order condition is satis ed). Suppose that a benevolent dictator can choose the  level of e ort that both individuals must exert. He chooses the e ort levels that maximize the sum of the expected utilities of both agents (these e orts are also called socially optimal levels).

(c) Write down the maximization problem of the benevolent dictator.

(d) Find the e ort levels that the dictator imposes on each individual (use the rst-order condition and assume that the second-order condition is satis ed). Find the expected utility of each individual.

(e) Compare the e ort level and nal utility of each individual in the cases of Nash Equilibrium (sel sh individual maximization) and benevolent dictatorship.

 


Related Discussions:- Maximization problem

Dominant strategy , Normal 0 false false false EN-US ...

Normal 0 false false false EN-US X-NONE X-NONE

Combining simultaneous and sequential moves, Combining Simultaneous and...

Combining Simultaneous and  Sequential Moves The material in this chapter covers a variety of issues that require some knowledge of the analysis of both sequential- move

What do meant by monopolistic competition, What do meant by Monopolistic co...

What do meant by Monopolistic competition? Monopolistic competition is a market structure wherein: 1. There are several competing producers into an industry, 2. Every pro

Subgame , A subset or piece of a sequential game starting at some node such...

A subset or piece of a sequential game starting at some node such {that each that each} player is aware of each action of the players that moved before him at every purpose. Sub ga

Mixed strategy, A strategy consisting of potential moves and a chance distr...

A strategy consisting of potential moves and a chance distribution (collection of weights) that corresponds to how frequently every move is to be played. A player would solely use

First price auction, Two individuals, Player 1 and Player 2, are competing ...

Two individuals, Player 1 and Player 2, are competing in an auction to obtain a valuable object. Each player bids in a sealed envelope, without knowing the bid of the other player.

sub game excellent nash equilibrium , A sub game excellent Nash equilibriu...

A sub game excellent Nash equilibrium is an equilibrium such that players' methods represent a Nash equilibrium in each sub game of the initial game. it should be found by backward

Zero restriction, A priori knowledge usually enables us to decide that some...

A priori knowledge usually enables us to decide that some coefficients must be zero in the particular equation, while they assume non-zero values in other equations of the system.

Payoffs, mixed strategy game with ordinal and cardinal payoffs example plea...

mixed strategy game with ordinal and cardinal payoffs example please

Game :the tire story, GAME 2 The Tire Story Another game that we have ...

GAME 2 The Tire Story Another game that we have successfully played in the first lecture is based on the “We can’t take the exam; we had a flat tire”. Even if the students hav

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd