Maximization problem, Game Theory

Assignment Help:

Two individuals (i ∈ {1, 2}) work independently on a joint project. They each independently decide how much e ort ei they put. E ort choice has to be any real number between 0 and 1 (ei ∈ [0, 1] not just 0 or 1). The cost of putting an amount of e ffort ei is n e2i/2, where n is a parameter greater or equal than 2. If individual i puts e ffort ei, then he succeeds with probability ei and fails with probability 1 - ei. The probability of success of the two agents are independent; this means that both succeed with probability e1x e2, 1 succeeds and 2 fails with probability e1 x(1 - e2), 1 fails and 2 succeeds with probability (1 - e1)e2, and both fail with probability (1 - e1)  (1 - e2).

If at least one of the individuals succeeds then, independently of who did succeed, both individuals get a payo of 1. If none of them succeeds, both individuals get 0. Therefore, each individual is a ected by the action of the other. However, individuals choose the level of e ort that maximizes their own expected utility (bene t minus cost of e ort).

(a) Write down the expected utility of individuals 1 and 2 (note that the utility of 1 depends on the e orts of 1 and 2 and the utility of 2 depends on the e orts of 1 and 2). [Hint. The expected bene t of 1 is the probability that 1 and/or 2 succeed times the payo if 1 and/or 2 succeed plus the probability that both 1 and 2 fail times the payo if both 1 and 2 fail.]

(b) Find the Nash equilibrium of this game, that is, the optimal level of e ort. Find the expected utility of each individual in equilibrium (use the rst-order condition and make sure that the second-order condition is satis ed). Suppose that a benevolent dictator can choose the  level of e ort that both individuals must exert. He chooses the e ort levels that maximize the sum of the expected utilities of both agents (these e orts are also called socially optimal levels).

(c) Write down the maximization problem of the benevolent dictator.

(d) Find the e ort levels that the dictator imposes on each individual (use the rst-order condition and assume that the second-order condition is satis ed). Find the expected utility of each individual.

(e) Compare the e ort level and nal utility of each individual in the cases of Nash Equilibrium (sel sh individual maximization) and benevolent dictatorship.

 


Related Discussions:- Maximization problem

Edgeworth, Living from 1845 to 1926, Edgeworth's contributions to Economics...

Living from 1845 to 1926, Edgeworth's contributions to Economics still influence trendy game theorists. His Mathematical Psychics printed in 1881, demonstrated the notion of compet

Tower defense, Tower defense - is a subgenre of real-time strategy games. T...

Tower defense - is a subgenre of real-time strategy games. The goal of tower defense games is to try to stop enemies from crossing a map by building towers which shoot at them as t

Case study in game theory - color coordination, Game 1 Color Coordination (...

Game 1 Color Coordination (with Delay) This game should be played twice, once without the delay tactic and once with it, to show the difference between out- comes in the s

Game playing in class-equilibrium payoffs are (2, Equilibrium payoffs are ...

Equilibrium payoffs are (2, 3, 2). Player A’s equilib- rium strategy is “N and then N if b follows N or N if d follows N” or “Always N.” Player B’s equilibrium strategy is “b if N

Simultaneous move games with mixed strategies, This chapter introduces mixe...

This chapter introduces mixed strategies and the methods used to solve for mixed strategy equilibria. Students are likely to accept the idea of randomization more readily if they t

Pareto economical , Named when Vilfredo Pareto, Pareto potency (or Pareto o...

Named when Vilfredo Pareto, Pareto potency (or Pareto optimality) may be alive of potency. An outcome of a game is Pareto economical if there's no different outcome that produces e

Game tree, A game tree (also referred to as the in depth form) may be a gra...

A game tree (also referred to as the in depth form) may be a graphical illustration of a sequential game. It provides data concerning the players, payoffs, strategies, and also the

Determine nash equilibria, Consider the electoral competition game presente...

Consider the electoral competition game presented in Lecture 6. In this game there are two candidates who simultaneously choose policies from the real line. There is a distribution

Sealed bid auction, An auction during which bidders simultaneously submit b...

An auction during which bidders simultaneously submit bids to the auctioneer while not information of the number bid by different participants. Usually, the very best bidder (or lo

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd