Mathematical description of a perspective projection, Computer Graphics

Assignment Help:

Mathematical description of a Perspective Projection

A perspective transformation is found by prescribing a center of projection and a viewing plane. Let here assume that P(x,y,z) be any object point in 3-D and center of projection is at E(0,0,-d). The problem is to find out the image point coordinates P'(x',y',z') on the Z=0 plane as in Figure 18.

703_Mathematical description of a Perspective Projection.png

The parametric equation of a l EP, beginning from E and passing via P is:

E+ t(P-E)  0

=(0,0,-d)+t[(x,y,z)-(0,0,-d)]

=(0,0,-d)+t(x,y,z+d)

=[t.x, t.y, -d+t.(z+d)]

Point P' is acquired, when t=t*

There is, P'=(x',y',z') =[t*.x, t*.y, -d+t*.(z+d)]

Because P' lies on Z=0 plane implies -d+t*.(z+d)=0 must be true, there is t*=d/(z+d) is actual.

Therefore x'=t*.x=x.d/(z+d)

                  y'=t*.y=y.d/(z+d)

                  z'=-d+t*(z+d)=0,

 

Hence P'=( x.d/(z+d), y.d/(z+d), 0)

                  =(x/((z/d)+1),y/((z/d)+1),0)

In terms of Homogeneous coordinate system here P'=(x,y,0,(z/d)+1).  ---------(5)

 

The equation 5 in above can be written in matrix form as:

21_Mathematical description of a Perspective Projection 1.png

-------(1)

There is, P'h = Ph.Pper,z   ------    (2)

Here Pper,z in equation (4) represents the single point perspective transformation on z-axis.

The Ordinary coordinates are as:

[x',y',z',1]=[x/(r.z+1),y/(r.z+1),0,1]  where r=1/d                             ------ (3)


Related Discussions:- Mathematical description of a perspective projection

Translation, Translation, Rotation and Scaling -  output primitives 1. ...

Translation, Rotation and Scaling -  output primitives 1. Two basic approaches used in character generation are - Bitmap method and outline method.  2. All 2D geometric tran

3d graphics, Define hermite interpolation in deatail description with examp...

Define hermite interpolation in deatail description with example?

Surface of revolution - modeling and rendering, Surface of Revolution - Mod...

Surface of Revolution - Modeling and Rendering In the previsions sections we have learned different type of techniques of generating curves, although if we wish to generate a

Types of polygon tables curves and surfaces, Types of Polygon tables curves...

Types of Polygon tables curves and surfaces Attribute tables: This table has object information as transparency, surface reflexivity, texture features of an object in the vi

B splines, What is uniform rational splines

What is uniform rational splines

Differentiate between raster and vector images, QUESTION a) Differentia...

QUESTION a) Differentiate between raster and vector images. b) Explain the concept of bit depth. What is the minimum number if bits required for a one-colour digital image t

Flat panel displays - hardware primitives, Flat Panel Displays - Hardware P...

Flat Panel Displays - Hardware Primitives 1.  Flat panel displays have now become more common. These include liquid crystal displays (LCD) and thin film electroluminescent disp

Boundary-fill algorithm or flood-fill algorithm , boundary-fill algorithm o...

boundary-fill algorithm or flood-fill algorithm As you saw the implementation of scan line polygon fill requires that boundaries should be straight line segments.  The seed fi

Low level techniques (motion specific), Low level techniques (motion specif...

Low level techniques (motion specific) Techniques utilized to fully control the motion of any graphic object in any type of animation scene, these techniques are also considere

Explain clearly how to view the baseline grid, QUESTION (a) What are th...

QUESTION (a) What are the main purposes of using master pages? (b) How do you select a master page item on a document page? (c) How do you resize a graphics frame and its

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd