Mathematical description of a perspective projection, Computer Graphics

Assignment Help:

Mathematical description of a Perspective Projection

A perspective transformation is found by prescribing a center of projection and a viewing plane. Let here assume that P(x,y,z) be any object point in 3-D and center of projection is at E(0,0,-d). The problem is to find out the image point coordinates P'(x',y',z') on the Z=0 plane as in Figure 18.

703_Mathematical description of a Perspective Projection.png

The parametric equation of a l EP, beginning from E and passing via P is:

E+ t(P-E)  0

=(0,0,-d)+t[(x,y,z)-(0,0,-d)]

=(0,0,-d)+t(x,y,z+d)

=[t.x, t.y, -d+t.(z+d)]

Point P' is acquired, when t=t*

There is, P'=(x',y',z') =[t*.x, t*.y, -d+t*.(z+d)]

Because P' lies on Z=0 plane implies -d+t*.(z+d)=0 must be true, there is t*=d/(z+d) is actual.

Therefore x'=t*.x=x.d/(z+d)

                  y'=t*.y=y.d/(z+d)

                  z'=-d+t*(z+d)=0,

 

Hence P'=( x.d/(z+d), y.d/(z+d), 0)

                  =(x/((z/d)+1),y/((z/d)+1),0)

In terms of Homogeneous coordinate system here P'=(x,y,0,(z/d)+1).  ---------(5)

 

The equation 5 in above can be written in matrix form as:

21_Mathematical description of a Perspective Projection 1.png

-------(1)

There is, P'h = Ph.Pper,z   ------    (2)

Here Pper,z in equation (4) represents the single point perspective transformation on z-axis.

The Ordinary coordinates are as:

[x',y',z',1]=[x/(r.z+1),y/(r.z+1),0,1]  where r=1/d                             ------ (3)


Related Discussions:- Mathematical description of a perspective projection

Midpoint circle generation algorithm, Midpoint circle generation algorithm ...

Midpoint circle generation algorithm This makes use of a circle function. Based on this circle function, a decision parameter is created which is used to decide successive pixe

Relation between 2-d euclidean system and homogeneous system, Relation betw...

Relation between 2-D Euclidean system and Homogeneous coordinate system Suppose that P(x,y) be any point in 2-D Euclidean system. In HCS, we add a third coordinate to the poin

Implement the boundary fill and flood fill algorithm, 1. Implement the boun...

1. Implement the boundary fill algorithm and flood fill algorithm in C-language and use your code to fill two different types of closed areas such as  i)  A Circle ii)  A sel

Graphics image processing-image processing, Graphics Image Processing: The...

Graphics Image Processing: The most generally utilized software is: Photoshop. Characteristics: I.          Most general image processing software. II.         Focuses upon

Hypermedia, Hypermedia: it is a superset of hypertext. Hypermedia document...

Hypermedia: it is a superset of hypertext. Hypermedia documents comprise links not only to the other pieces of text, although also to other forms of media: sounds and images and m

Determine about the liquid crystal display, Determine about the Liquid Crys...

Determine about the Liquid Crystal Display LCDs are organic molecules, naturally in crystalline state, and they get liquified when excited by heat or E field. Crystalline state

Ray casting - polygon rendering and ray tracing methods, Ray Casting -polyg...

Ray Casting -polygon rendering and ray tracing methods It is a method wherein the surfaces of objects visible to the camera are determined by throwing or say casting rays of

Sound and audio, Sound and Audio: Sound is a mechanical energy distur...

Sound and Audio: Sound is a mechanical energy disturbance which propagates by matter as a wave. Sound is characterized through the various properties that are: frequency, per

Area filling algorithms - output primitives, Area Filling Algorithms Be...

Area Filling Algorithms Before we go ahead with area filling algorithms, a word about pixel addressing and object geometry. You know that line segments are discretized into fin

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd