Magnetic resonance image enhancement, Biology

Assignment Help:

Over the last three decades medical imaging has developed to be an important tool for medical condition diagnosis, treatment planning and surgery. The insight provided by information contained in medical images has become essential in providing the community with 'a better life' and 'a healthy lifestyle'. Medical imaging aims to promote life and prolong life expectancy within the wider community by increasing our knowledge of healthy and diseased processes. Medical imaging tools to better delineate and identify information are necessary to impart clarity to the medical profession. High field Magnetic Resonance Imaging (MRI) has had much development in the last five years and Susceptibility Weighted Imaging (SWI) has emerged as an image post-processing technique. Mostly the magnitude of the complex data is illustrated as intensities in images, but in SWI, the additional information contained in the phases is used to enhance what is captured in magnitude images. The extracted additional level of detail can be used in traumatic brain injury, stroke and other brain disorders, to better delineate the spatial severity of the problem. Assignment 1 is related to how SWI can be used to enhance magnetic resonance images. In MRI the presence of a magnetic field induces the relaxation of protons. This relaxation in time is captured as a signal through the generation of an echo. The signal is time series data

and is referred to as the Free Induction Decay (FID). In this assignment it is assumed that proton (1H - hydrogen) relaxation data has been acquired and is stored as signal magnitude and phase. The provided data are in image space, and generated after data derived from the FID was 2D Fourier transformed. The actual raw data collected by the scanner can be computed by taking the inverse 2D Fourier transform of the complex image intensities. As part of this assignment you are provided with '2dseq' files containing magnitude and phase information and 'acqp' file consisting of data acquisition parameters. These files were generated on a Bruker 16.4T research scanner using Paravision 4.0. The echo signals were generated using a T2 * weighted gradient echo (i.e. transverse relaxation) image acquisition sequence. The assignment requires that the data is read, processed and susceptibility weighted images are reconstructed. You are required to submit your m-files and answers on blackboard. Each question must be a function in a separate m-file executed and saved as A1QX.m (X=1, 2, 3 or 4). You should save your answers and plots, combine these into a PDF file and submit it along with your m- files. Clearly mark which question you are answering and label all plots. You are not required to write lengthy answers, simply provide what is asked. You will not only receive marks for correct answers, but also for clarity of your presentation. This means that your algorithms should use indenting, explanatory comments for variables and complicated lines of code. You should use your research and searching skills to investigate any terms that you do not understand.

QUESTION 1

Using the supplied read_2dseq.m file read the provided files into MATLAB (useful Matlab commands: abs, image, axis, caxis, imagesc, colormap, figure, subplot, title). The results should be illustrated as figure 1, using four subplots and gray scale. The following questions should be illustrated as separate plots in figure 1. For slice number 100, illustrate the following:

(a) Normalised magnitude image

(b) Scaled phase imaged in [-Π, Π]

(c) Real part of the image

(d) Imaginary part of the image

QUESTION 2

You need to filter slice 100 phase images to identify microscopic phase changes contained amongst macroscopic phase variations (Note: file QualityGuidedUnwrap2D.m has been supplied to you).

(a) Low-pass filters the images using an 8*8 boxcar filter. (Note: Boxcar method smooths the variations through averaging, effectively reducing the amount of high frequency variations. Furthermore, it helps if the phases are first unwrapped).

(b) Illustrate the microscopic phase variations. (Note: Difference between original phase and new phase is high-pass filtered phase).


Related Discussions:- Magnetic resonance image enhancement

Explain subphylum urochordata, Subphylum Urochordata : (13,000 species, se...

Subphylum Urochordata : (13,000 species, sea squirts) Notocord is dorally situated, nerve tube dorsally situated and is hollow, chordate characteristics seen mainly in bilatera

Nucleic acid hybridization, Nucleic acid thermodynamics is the learning of ...

Nucleic acid thermodynamics is the learning of how temperature affects the nucleic acid structure of dsDNA (double-stranded DNA). The melting temperature (Tm) is explained as the t

Determine the statement- the evolution of color vision, Based on your readi...

Based on your reading of the article entitled "The Evolution of Color Vision", which of the following is a false statement? A. Trichomatic vision is found in all male and femal

What about whale fins compared to fish fins, Q. Are the limbs modified into...

Q. Are the limbs modified into wings of bats and the wings of birds instance of evolutionary homology or analogy? What about whale fins compared to fish fins? Bird and Bat wing

Hyperlipidemia, Dyslipidemia is an important correctable factor for Coronar...

Dyslipidemia is an important correctable factor for Coronary Artery Disease. There is a strong, independent, continuous, and graded relation between total cholesterol (TC) or low-

Small for gestational age & intrauterine growth retardation, Define Small f...

Define Small for Gestational Age and Intrauterine Growth Retardation? Small for Gestational Age (SGA) is defined as infants affected by intrauterine growth restriction (IUGR).

How big of container would need to hold, Assume you were given a mixture co...

Assume you were given a mixture consisting of one molecule each of all possible sequences of a smallish protein of molecular weight 4800 daltons. If the average molecular weight of

What process causes oxygen to pass from the alveoli, What process causes ox...

What process causes oxygen to pass from the alveoli into the lung capillaries? Diffusion is the process by which oxygen passes from the alveoli to the lung capillaries.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd