Machine coding the programs-microprocessor, Assembly Language

Assignment Help:

Machine Coding the Programs

So far we have describe five programs which were  written  for hand coding  by a programmer. In this, we will now have a deep look at how these programs may be  translate to machine codes. In Appendix, the instruction set along with the Appendix is presented. This Appendix is self-explanatory to hand code mostly of the instructions. The V,S W, D, MOD, REG  and R/M  fields are appropriate decided depending upon the data types, addressing mode and the registers  used. The table shows the details about how to select these fields.

Most of the instructions either have particular opcodes or they may be decided only by setting the V,S, W, D, REG, MOD and R/M fields suitably but the critical point is  the calculation of jump addresses for intra segment branch instructions. Before beginning the coding of call or jump instructions, we will see some simpler coding examples.

Example :

MOV BL, CL

For hand coding this instruction, first we will have to note down the following features.

(i) It sets in the register/memory to/from register format.

(ii) It is an 8-bit operation.

(iii) BL is the destination register and CL is a source register.

Now from the feature (i) by using the Appendix, the op code format is given below.

1485_mcp.jpg

If d =1, then transformation of data is to the register shown by the REG field, for example the destination is a register (REG). If d = 0, the source is a register shown by the REG field. It is an 8-bit operation, therefore w bit is 0. If it had been a 16-bit operation, the w bit would have been 1.From referring to given table to search the REG to REG addressing in it, for example the last column with MOD 11. According to the Appendix when MOD is 11, the R/M field is treated as a REG field. The REG field which is used for source register and the R/M field are used for the destination register, if d is 0. If d =1, the REG field is utilized for destination and the R/M field is used to indicate source. the complete machine code of this instruction comes out to be now.

code    dw       MOD   REG    R/M

MOV BL, CL 1 0 0 0 1 0 0 0     1   1   001    0 1 1= 88 CB


Related Discussions:- Machine coding the programs-microprocessor

Instruction set of 8086-microprocessor, Instruction set of 8086 : The 8...

Instruction set of 8086 : The 8086/8088 instructions are categorized into the following major types. This section describes the function of each of the instructions with approp

CONSTANTS, Ask question #MinimuWHAT ARE CONSTANTS AND WHAT DO THEY DO?m 100...

Ask question #MinimuWHAT ARE CONSTANTS AND WHAT DO THEY DO?m 100 words accepted#

Neg-arithmetic intruction-microprocessor, NEG: Negate:- The negate instruc...

NEG: Negate:- The negate instruction forms the 2's complement of the particular destination in the instruction. For obtaining 2's complement, it subtracts the contents of destinat

Program for dispaying lcd characters, #include"lcd.asm"       ; assembly fi...

#include"lcd.asm"       ; assembly file is included for displaying lcd characters Main: PORTA EQU 0xF80  ; PORTS PORTB EQU 0xF81 PORTC EQU 0xF82 PORTD EQU 0xF83 R

Hashing, what is double hashing

what is double hashing

Program, move a byte string ,16 bytes long from the offset 0200H to 0300H i...

move a byte string ,16 bytes long from the offset 0200H to 0300H in the segment 7000H..

Develop a schematic circuit diagram of system, Develop a suitable schematic...

Develop a suitable schematic circuit diagram of your system showing the interface between the PIC16F84 and the existing mains light & switch, including 5V derivation from the 240V

Div-idiv-arithmetic instruction-microprocessor, DIV: Unsigned Division:- T...

DIV: Unsigned Division:- This instruction performs unsigned division operation. It divides an unsigned word or double word by a 16-bit or 8-bit operand. The dividend might be in t

Relocate program and data, ) What is the difference between re-locatable pr...

) What is the difference between re-locatable program and re-locatable data?

8254 programmable timer-microprocessor, 8254 Programmable Timer A diagr...

8254 Programmable Timer A diagram of Intel's 8254 interval event/timer counter is given in Figure. The 8254 consists of 3 identical counting circuits, per of which has GATE and

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd