Low and high pass filters - calculate the cutoff frequencies, Electrical Engineering

Assignment Help:

At the completion of this unit, you will be able to determine the cutoff frequencies and attenuations of RC and RL low- and high-pass filters by using test circuits.

UNIT FUNDAMENTALS

A filter is a frequency-selective circuit that permits signals of certain frequencies to pass while it rejects signals at other frequencies.

1231_Low and High Pass Filters 1.png

A low-pass filter, as its name implies, passes low frequencies but rejects high frequencies.

1982_Low and High Pass Filters 2.png

The dividing line between the passing of low frequencies and the rejecting of high frequencies is the cutoff frequency (fc), or -3 dB point. In a low-pass filter, signals lower than the cutoff frequency pass essentially unmodified. Frequencies higher than the cutoff frequency are greatly attenuated, or reduced.

1595_Low and High Pass Filters 3.png

In a high-pass filter, signals higher than the cutoff frequency pass essentially unmodified. Signals lower than the cutoff frequency is greatly attenuated, or reduced.

The cutoff frequency (fc) is the point where the output voltage (Vo) drops to 70.7% of, or 3 dB down from, the input voltage.

1668_Low and High Pass Filters 4.png

Frequency response data may be expressed in terms of output voltage but is usually expressed in decibels (dB). Decibels are units that express or measure the gain or loss (attenuation) in a circuit. The decibel can be based on the ratio of the output voltage (Vo) to the input voltage (Vi).

2117_Low and High Pass Filters 5.png

NOTE: In the type of filters studied in this volume, the output voltage (Vo) is always less than the input voltage (Vi).

1191_Low and High Pass Filters 6.png

The rate of attenuation, or loss, beyond the cutoff frequency (fc) is highly predictable. This attenuation is 6 dB per octave or 20 dB per decade. An attenuation rate of 6 dB per octave is the same rate as 20 dB per decade.

NEW TERMS AND WORDS

band - a range of frequencies.

dB per octave - decibels per octave (dB/octave); a 1 dB increase or decrease over a two-to-one frequency range.

dB per decade - decibels per decade (dB/decade); a 1 dB increase or decrease over a ten-to-one frequency range.

octave - a two-to-one or one-to-two ratio; a frequency factor of two. One octave is the doubling or halving of a frequency.

decade - a ten-to-one or one-to-ten ratio; a frequency factor of ten.

rolled off - gradually attenuated, or decreased. A filter attenuates when its rejected frequencies are rolled off.

EQUIPMENT REQUIRED

F.A.C.E.T. base unit

AC 2 FUNDAMENTALS circuit board

Oscilloscope, dual trace

Generator, sine wave

Exercise 1 - Low-Pass Filters  

EXERCISE OBJECTIVE

When you have completed this exercise, you will be able to calculate the cutoff frequencies and attenuations of RC and RL low-pass filters. You will verify your results with an oscilloscope.

DISCUSSION

  • Several ways exist for the implementation of low-pass filters, each of which consist of a voltage-divider network containing a resistor and a frequency-varying component (inductor or capacitor).
  • Output voltage from the filters is "tapped off" the voltage divider.
  • Changes in the frequency of the supply voltage cause changes in the circuit reactance, resulting in output voltage variations.
  • In RC filters, the capacitive reactance is high at low frequencies compared to the resistance, causing most of the input voltage to appear across the output capacitor.
  • Capacitive reactance decreases as the generator frequency increases, causing larger voltage drops across the R and decreasing the voltage across the output capacitor.
  • Low-pass filters are designed so that frequencies below the cut-off frequency are passed while higher frequencies are attenuated.
  • In low-pass RL filters, the inductive reactance is small at low frequencies compared to the resistance, and most of the input voltage falls across the output resistor.
  • Inductive reactance increases as the generator frequency increases; therefore, more and more voltage is dropped across the inductor and less across the output resistor.
  • Cutoff frequency is defined as the frequency where the output signal is 3 dB down, or 0.707 x Vo.
  • For RC circuits: fc = 1/2πRC
  • For RL circuits: fc = R/2πL

 

 

 

 

 

 


Related Discussions:- Low and high pass filters - calculate the cutoff frequencies

Detrmine when the current flowing in the conductor, A conductor 300 mm long...

A conductor 300 mm long moves at a uniform speed of 4 m/s at right-angles to a uniform magnetic field of flux density 1.25 T. Verify the current flowing in the conductor when  (

Sonic harassment, Sir I would like to find a sensor that can detect beams ...

Sir I would like to find a sensor that can detect beams from the phasor painfield generator and the sonic devasator (devices of this nature). These sonic devices emit a high pres

Convert these numbers to their decimal values, Q. Consider the three BCD nu...

Q. Consider the three BCD numbers listed below. 0001 1000 0101 1000 0010 0001 0011 1000 0100 0011 0101 0101 a) Convert these numbers to their decimal values. b) Conv

Analog averaging system, Consider the analog averager where x(t) is the inp...

Consider the analog averager where x(t) is the input and y(t) is the output. (a)   Find the impulse response h(t) of the average.  Is this system causal? (b)   Let x(t)

What ratio is needed for the cable, Q. If b and a are the radii of the oute...

Q. If b and a are the radii of the outer and inner conductors, respectively, of a coaxial cable using a polyethylene dielectric (ε r = 2.26), what ratio b/a is needed for the cabl

Find the bandwidth of the circuit, Q. A simple parallel resonant circuit wi...

Q. A simple parallel resonant circuit with L = 50 µH is used to performthe frequency selection. The circuit is to be tuned to the first station at a frequency of 1000 kHz. In order

How is energy stored in a capacitor, Energy stored in a capacitor Durin...

Energy stored in a capacitor During charging process by capacitor, it will get energy. Energy is stored in static form. The voltage in capacitor will enhance from 0 volt to E v

Magnetic field, what is the difference between static and induced emf

what is the difference between static and induced emf

FSM(finite state machine, A sequential circuit has two inputs w1 and w2, an...

A sequential circuit has two inputs w1 and w2, and an output, z. Its function is to compare the input sequences on the two inputs. If w1=w2 during any four consecutive clock cycl

Types of cells and batteries, Types of cells and batteries are:- a.  C...

Types of cells and batteries are:- a.  Carbon-zinc cell b. Nickel-cadmium cell c.  Alkaline celld.  d.  Edison cell e.  Mercury cell

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd