Logarithmic form and exponential form, Mathematics

Assignment Help:

Logarithmic form and exponential form ; We'll begin with b = 0 , b ≠ 1. Then we have

y= logb x          is equivalent to                  x= b y

The first one is called logarithmic form and the second is called the exponential form.  Remembering this is the key to evaluating logarithms. The number b, is base.

Example Without a calculator give the precise value of following logarithms.

(a) log2 16 

 (d) log9 (1/531441) 

(e) log 1/6 36 

Solution

To rapidly evaluate logarithms the simplest thing to do is to convert the logarithm to exponential form.  Hence, let's take a look at the first one.

(a) log2 16

Firstly, let's convert to exponential form.

log2 16 =?        is equivalent to            2? = 16

Hence, we're really asking two raised to what gives 16.  As 2 raised to 4 is 16 we get,

log2 16 = 4       because            24 =16

We'll not do the remaining parts in fairly this detail, however they were all worked in this way.

 (d) log 9(1/531441) = -6        because            9-6  = 1/96  =    1 /531441

 (e) log 1/6 36   = -2      because                        (1/6)-2=62=36

Special logarithms

There are a some special logarithms that arise in many places. These are following,

Natural logarithm

                                        ln x = loge x

This log is called as the natural logarithm

Common logarithm

                                        log x = log10 x

This log is called as the common logarithm

In the natural logarithm the base e is the similar number as in the natural exponential logarithm which we saw in the last section. Given is a sketch of both of these logarithms.

2244_Logarithmic  graph.png

From this graph we get some very nice properties of the natural logarithm which we will use several times in this and later Calculus courses.

ln x → ∞                  as  x → ∞

ln x → -∞             as  x → 0, x > 0


Related Discussions:- Logarithmic form and exponential form

Proof of constant times a function, Proof of Constant Times a Function: ...

Proof of Constant Times a Function: (cf(x))′ = cf ′(x) It is very easy property to prove using the definition given you a recall, we can factor a constant out of a limit. No

Geometry of convex sets, (a) Given a norm jj jj on Rn, express the closed b...

(a) Given a norm jj jj on Rn, express the closed ball in Rn of radius r with center c as a set. (b) Given a set A and a vector v, all contained in Rn, express the translate of A by

Which mathematical property did marty use to get similar ans, Marty used th...

Marty used the subsequent mathematical statement to show he could change an expression and still get the similar answer on both sides: 10 × (6 × 5) = (10 × 6) × 5 Which mathematica

4 accounting majors, 4 accounting majors, 2 economics majors and 3 marketin...

4 accounting majors, 2 economics majors and 3 marketing majors have an interview for5 different positions with a large company. Find the number of dfferent ways that 5 of these c

Trigonometry, trigonometric ratios of sum and difference of two angles

trigonometric ratios of sum and difference of two angles

Determine probability , You are going on a road trip and you buy snack pack...

You are going on a road trip and you buy snack packs and three different kind of beverages.  You buy 7 Cokes, 5 Pepsis and 4 Dr. Peppers.  You pull out two beverages at random.  An

Trigonometric approximation grid, With a compass draw the arc associated wi...

With a compass draw the arc associated with a 720° angle, it looks like a circle. With a protractor, label the angle in multiples of 45° and 30° up to 720°.  Notice 30° and 390° ar

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd