Logarithmic differentiation, Mathematics

Assignment Help:

Logarithmic Differentiation : There is one final topic to discuss in this section. Taking derivatives of some complicated functions can be simplified by using logarithms.  It is called logarithmic differentiation.

It's easiest to illustrate how this works in an example.

Example Differentiate the function.

1985_Logarithmic Differentiation.png

Solution: Differentiating this function could be completed with a product rule & quotient rule. Though, that would be a fairly messy procedure. We can make simpler things somewhat by taking logarithms of both sides.

1147_Logarithmic Differentiation1.png

Certainly, it isn't really simpler.  What we have to do is utilize the properties of logarithms to expand the right side as follows.

489_Logarithmic Differentiation3.png

It doesn't look all that simple.  Though, the differentiation procedure will be simpler.  What we have to do at this point is differentiate both of the sides w.r.t x.  Note as well that it is really implicit differentiation.

y′ /y= 5x4 / x5 = -10/(1-10x) - ((1/2)   (x2+2)(-1/2)(2x)/(x2+2)(1/2)

y′ /y= 5/ x +10/(1-10x) - x/ (x2+2)

To finish the problem all that we have to do is multiply both sides through y and the plug in for y as we do know what that is.

y′ = y ( 5/x +   (10/1 -10 x)    - x/ x2 + 2))    

1700_Logarithmic Differentiation4.png

Based upon the person, doing this would perhaps be slightly easier than doing both the quotient & product rule. The answer is approximately definitely simpler than what we would have gotten by using the product & quotient rule.

We can also utilize logarithmic differentiation to differentiation functions in the form.

                                    y = ( f ( x ))g ( x )


Related Discussions:- Logarithmic differentiation

Polynomials, simplify the expression 3/5/64

simplify the expression 3/5/64

Calculate the profit of company, Company A and Company B have spent a lot o...

Company A and Company B have spent a lot of money on research to develop a cure for the common cold. Winter is approaching and there is certainly going to be a lot of demand for th

Natural exponential function , Natural exponential function : There is a e...

Natural exponential function : There is a extremely important exponential function which arises naturally in several places. This function is called as the natural exponential fun

Limits, evaluate limit as x approaches 0 (x squared times sin (1/x)

evaluate limit as x approaches 0 (x squared times sin (1/x)

Spring force, Spring, F s We are going to suppose that Hooke's Law wil...

Spring, F s We are going to suppose that Hooke's Law will govern the force as the spring exerts on the object. This force will all the time be present suitably and is F s

Systems of equations, Since we are going to be working almost exclusively a...

Since we are going to be working almost exclusively along with systems of equations wherein the number of unknowns equals the number of equations we will confine our review to thes

Evaluate inverse tangents , Evaluate following limits. Solution ...

Evaluate following limits. Solution Here the first two parts are actually just the basic limits including inverse tangents and can easily be found by verifying the fol

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd