Logarithmic differentiation, Mathematics

Assignment Help:

Logarithmic Differentiation : There is one final topic to discuss in this section. Taking derivatives of some complicated functions can be simplified by using logarithms.  It is called logarithmic differentiation.

It's easiest to illustrate how this works in an example.

Example Differentiate the function.

1985_Logarithmic Differentiation.png

Solution: Differentiating this function could be completed with a product rule & quotient rule. Though, that would be a fairly messy procedure. We can make simpler things somewhat by taking logarithms of both sides.

1147_Logarithmic Differentiation1.png

Certainly, it isn't really simpler.  What we have to do is utilize the properties of logarithms to expand the right side as follows.

489_Logarithmic Differentiation3.png

It doesn't look all that simple.  Though, the differentiation procedure will be simpler.  What we have to do at this point is differentiate both of the sides w.r.t x.  Note as well that it is really implicit differentiation.

y′ /y= 5x4 / x5 = -10/(1-10x) - ((1/2)   (x2+2)(-1/2)(2x)/(x2+2)(1/2)

y′ /y= 5/ x +10/(1-10x) - x/ (x2+2)

To finish the problem all that we have to do is multiply both sides through y and the plug in for y as we do know what that is.

y′ = y ( 5/x +   (10/1 -10 x)    - x/ x2 + 2))    

1700_Logarithmic Differentiation4.png

Based upon the person, doing this would perhaps be slightly easier than doing both the quotient & product rule. The answer is approximately definitely simpler than what we would have gotten by using the product & quotient rule.

We can also utilize logarithmic differentiation to differentiation functions in the form.

                                    y = ( f ( x ))g ( x )


Related Discussions:- Logarithmic differentiation

Evaluate the integral, Example:   If c ≠ 0 , evaluate the subsequent integr...

Example:   If c ≠ 0 , evaluate the subsequent integral. Solution Remember that you require converting improper integrals to limits as given, Here, do the integ

factorial, why zero factorial is equal to on

why zero factorial is equal to one

Number theory, formula for non negative solutions integral

formula for non negative solutions integral

Determine the velocity and position functions of object, Determine if the a...

Determine if the acceleration of an object is given by a → = i → + 2 j → + 6tk → find out the object's velocity and position functions here given that the initial velocity is v

Inverse function, how to solve the equation of an inverse function

how to solve the equation of an inverse function

Find the common difference of an ap, Find the common difference of an AP wh...

Find the common difference of an AP whose first term is 100 and sum of whose first 6 terms is 5 times the sum of next 6 terms. Ans:    a = 100 APQ a 1 + a 2 + ....... a 6

Positive real exponents, Simplify following and write the answers with only...

Simplify following and write the answers with only positive exponents.  (a) ( x 8.2 y -0.26 z 2 ) 0.5  (b)  (x 3 y -4.1   / x -2.7 ) -3 Solution  (a) (x 8.2

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd