Logarithmic differentiation, Mathematics

Assignment Help:

Logarithmic Differentiation : There is one final topic to discuss in this section. Taking derivatives of some complicated functions can be simplified by using logarithms.  It is called logarithmic differentiation.

It's easiest to illustrate how this works in an example.

Example Differentiate the function.

1985_Logarithmic Differentiation.png

Solution: Differentiating this function could be completed with a product rule & quotient rule. Though, that would be a fairly messy procedure. We can make simpler things somewhat by taking logarithms of both sides.

1147_Logarithmic Differentiation1.png

Certainly, it isn't really simpler.  What we have to do is utilize the properties of logarithms to expand the right side as follows.

489_Logarithmic Differentiation3.png

It doesn't look all that simple.  Though, the differentiation procedure will be simpler.  What we have to do at this point is differentiate both of the sides w.r.t x.  Note as well that it is really implicit differentiation.

y′ /y= 5x4 / x5 = -10/(1-10x) - ((1/2)   (x2+2)(-1/2)(2x)/(x2+2)(1/2)

y′ /y= 5/ x +10/(1-10x) - x/ (x2+2)

To finish the problem all that we have to do is multiply both sides through y and the plug in for y as we do know what that is.

y′ = y ( 5/x +   (10/1 -10 x)    - x/ x2 + 2))    

1700_Logarithmic Differentiation4.png

Based upon the person, doing this would perhaps be slightly easier than doing both the quotient & product rule. The answer is approximately definitely simpler than what we would have gotten by using the product & quotient rule.

We can also utilize logarithmic differentiation to differentiation functions in the form.

                                    y = ( f ( x ))g ( x )


Related Discussions:- Logarithmic differentiation

Index shift - sequences and series, Index Shift - Sequences and Series ...

Index Shift - Sequences and Series The main idea behind index shifts is to start a series at a dissimilar value for whatever the reason (and yes, there are legitimate reasons

How high is a structure, One method of calculating the height of an object ...

One method of calculating the height of an object is to place a mirror on the ground and then position yourself so that the top of the object will be seen in the mirror. How high i

Customary units of length, Eileen needs 9 feet of fabric to make a skirt. I...

Eileen needs 9 feet of fabric to make a skirt. If Eileen has 18 feet of fabric how many skirts can she make?

Simple equations, three times the first of the three consecutive odd intege...

three times the first of the three consecutive odd integers is 3 more than twice the third integer. find the third integer.

Calculate the profit of company, Company A and Company B have spent a lot o...

Company A and Company B have spent a lot of money on research to develop a cure for the common cold. Winter is approaching and there is certainly going to be a lot of demand for th

Compute the double integral - triangle with vertices, 1) let R be the trian...

1) let R be the triangle with vertices (0,0), (pi, pi) and (pi, -pi). using the change of variables formula u = x-y and v = x+y , compute the double integral (cos(x-y)sin(x+y) dA a

Illustration of rank correlation coefficient, Illustration of Rank Correlat...

Illustration of Rank Correlation Coefficient Sometimes numerical data such refers to the quantifiable variables may be described after which a rank correlation coefficient may

Example of addition of signed numbers, Example of addition of Signed Number...

Example of addition of Signed Numbers: Example: (-2) + 3 + 4 = 0 - 2 + 3 + 4 Solution: Thus: (-2) + 3 + 4 = 5  Example: 10 + (-5) + 8 + (-7)

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd