Logarithmic differentiation, Mathematics

Assignment Help:

Logarithmic Differentiation : There is one final topic to discuss in this section. Taking derivatives of some complicated functions can be simplified by using logarithms.  It is called logarithmic differentiation.

It's easiest to illustrate how this works in an example.

Example Differentiate the function.

1985_Logarithmic Differentiation.png

Solution: Differentiating this function could be completed with a product rule & quotient rule. Though, that would be a fairly messy procedure. We can make simpler things somewhat by taking logarithms of both sides.

1147_Logarithmic Differentiation1.png

Certainly, it isn't really simpler.  What we have to do is utilize the properties of logarithms to expand the right side as follows.

489_Logarithmic Differentiation3.png

It doesn't look all that simple.  Though, the differentiation procedure will be simpler.  What we have to do at this point is differentiate both of the sides w.r.t x.  Note as well that it is really implicit differentiation.

y′ /y= 5x4 / x5 = -10/(1-10x) - ((1/2)   (x2+2)(-1/2)(2x)/(x2+2)(1/2)

y′ /y= 5/ x +10/(1-10x) - x/ (x2+2)

To finish the problem all that we have to do is multiply both sides through y and the plug in for y as we do know what that is.

y′ = y ( 5/x +   (10/1 -10 x)    - x/ x2 + 2))    

1700_Logarithmic Differentiation4.png

Based upon the person, doing this would perhaps be slightly easier than doing both the quotient & product rule. The answer is approximately definitely simpler than what we would have gotten by using the product & quotient rule.

We can also utilize logarithmic differentiation to differentiation functions in the form.

                                    y = ( f ( x ))g ( x )


Related Discussions:- Logarithmic differentiation

Melissa is four times if jim is y years old, Melissa is four times as old a...

Melissa is four times as old as Jim. Pat is 5 years older than Melissa. If Jim is y years old, how old is Pat? Start along with Jim's age, y, because he appears to be the young

Derive a linear system - gauss jordan elimination, Suppose that, on a certa...

Suppose that, on a certain day, 495 passengers want to fly from Honolulu (HNL) to New York (JFK); 605 passengers want to fly from HNL to Los Angeles (LAX); and 1100 passengers want

Evaluate the following exponentials limit, Evaluate following limits. ...

Evaluate following limits. Solution: Let's begin this one off in the similar manner as the first part. Let's take the limit of each piece. This time note that since our l

Geometry, what are the parts of angles

what are the parts of angles

Evaluate the limit, Evaluate the given limit. Solution : It is a ...

Evaluate the given limit. Solution : It is a combination of many of the functions listed above and none of the limited are violated so all we have to do is plug in x = 3

Define combined functions, Q. Define Combined Functions? Ans. We a...

Q. Define Combined Functions? Ans. We are often interested in functions which combine a trigonometric function with another type of function.  For example, y = x + sinx wi

Draw tangent graph y = sec ( x ), G raph y = sec ( x ) Solution: As wi...

G raph y = sec ( x ) Solution: As with tangent we will have to avoid x's for which cosine is zero (recall that sec x =1/ cos x) Secant will not present at

Solve 3 + 2 ln ( x /7+3 ) = -4 logarithm, Solve 3 + 2 ln ( x /7+3 ) = -4 . ...

Solve 3 + 2 ln ( x /7+3 ) = -4 . Solution This initial step in this problem is to get the logarithm by itself on one side of the equation  along with a coefficient of 1.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd