Locally weighted regression, Advanced Statistics

Assignment Help:

Locally weighted regression is the method of regression analysis in which the polynomials of degree one (linear) or two (quadratic) are used to approximate regression function in particular 'neighbourhoods' of the space of explanatory variables. It is many times useful for smoothing scatter diagrams to allow any structure to be seen more clearly and for identifying the possible non-linear relationships between the response and the explanatory variables. A robust estimation procedure (which is usually known as loess) is taken in use to guard against deviant points distorting the smoothed points. Essentially the procedure involves an adaptation of the iteratively reweighted least squares. The example shown in the figure illustrates the situation in which the locally weighted regression differs considerably from the linear failure of y on x as fitted by least squares estimation.

671_locally weighted regression.png 


Related Discussions:- Locally weighted regression

Window variables, Window variables are the variables measured during the c...

Window variables are the variables measured during the constrained interval of an observation period which is accepted as the proxies for the information over the whole period. Fo

Goodmanand kruskal measures of association, Goodmanand kruskal measures of ...

Goodmanand kruskal measures of association is the measures of associations which are useful in the situation where two categorical variables cannot be supposed to be derived from

Path analysis, Path analysis  is  a device for evaluating the interrelat...

Path analysis  is  a device for evaluating the interrelationships among the variables by analyzing their correlational structure. The relationships between the variables are man

Define kalman filter, Kalman filter : A recursive procedure which gives an ...

Kalman filter : A recursive procedure which gives an estimate of the signal when only the 'noisy signal' can be observed. The estimate is efficiently constructed by putting the exp

Infant mortality rate, Infant mortality rate is the ratio of the number of...

Infant mortality rate is the ratio of the number of deaths during the calendar year among the infants under one year of age to the total number of live births during that particul

Normality - reasons for screening data, Normality - Reasons for Screening...

Normality - Reasons for Screening Data Prior to analyzing multivariate normality, one should consider univariate normality Histogram, Normal Q-Qplot (values on x axis

Calculate the standard deviation, Q. A toothpaste company want to know if i...

Q. A toothpaste company want to know if its new product increases the length of time in-between dentist visit to its user. The company sets a target for 180 days to determine if it

Regression, what are tests for residual with nonconstant variance in regres...

what are tests for residual with nonconstant variance in regression diagnostic checking?

Explain Grade of membership model, Grade of membership model: This is the ...

Grade of membership model: This is the general distribution free method for the clustering of the multivariate data in which only categorical variables are included. The model ass

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd