Local and recognizable languages, Theory of Computation

Assignment Help:

We developed the idea of FSA by generalizing LTk transition graphs. Not surprisingly, then, every LTk transition graph is also the transition graph of a FSA (in fact a DFA)-the one in which the state set Q is just the set of nodes of the LTk transition graph. We get, as an immediate consequence, that every LT language (and, hence, every SL language and every ?nite language) is recognizable. In generalizing to arbitrary state sets, though, we have actually increased the power of our automata.


Related Discussions:- Local and recognizable languages

Decision problems of regular languages, We'll close our consideration of re...

We'll close our consideration of regular languages by looking at whether (certain) problems about regular languages are algorithmically decidable.

REGULAR GRAMMAR, Find the Regular Grammar for the following Regular Express...

Find the Regular Grammar for the following Regular Expression: a(a+b)*(ab*+ba*)b.

Finite state automata, Since the signi?cance of the states represented by t...

Since the signi?cance of the states represented by the nodes of these transition graphs is arbitrary, we will allow ourselves to use any ?nite set (such as {A,B,C,D,E, F,G,H} or ev

Create a general algorithm from a checking algorithm, Claim Under the assum...

Claim Under the assumptions above, if there is an algorithm for checking a problem then there is an algorithm for solving the problem. Before going on, you should think a bit about

Myhill graphs, Another way of representing a strictly 2-local automaton is ...

Another way of representing a strictly 2-local automaton is with a Myhill graph. These are directed graphs in which the vertices are labeled with symbols from the input alphabet of

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd