Link functions, Advanced Statistics

Assignment Help:

Link functions:

The link function relates the linear predictor ηi to the expected value of the data. In classical linear models the mean and the linear predictor are identical. However, when dealing with counts and the distribution is Poisson, we must have the Poisson distribution parameter satisfy µi > 0 so that the identity link is less attractive, partly because ηi may be negative while µi > 0 must not be. It is advisable to utilize the log link η = log(µ) in this case. Similarly, when dealing with binomial distribution, the parameter p of probability of success in a single trial is restricted to be in (0,1) and the link function serves the purpose to map the interval (0,1) on to R1 . Therefore, links like the following (here µ is replaced by p):

614_Link functions6.png

have been suggested and widely used.

Let us illustrate the most commonly met examples of GLM together with describing the types of response variable, distribution, and the link function:

- Traditional Linear Model:

i) response variable: continuous

ii) distribution: normal

iii) link function: identity : η = µ

- Logistic Regression:

i) response variable: probability ( µ)

ii) distribution: binomial

iii) link function: logit: η = log( µ/1-µ)

- Poisson Regression in Log Linear Model:

i) response variable: count

ii) distribution: Poisson
iii) link function: η = log(µ)
- Gamma model with Log Link:
i) response variable: a positive continuous variable
ii) distribution: Gamma
iii) link function: η = log(µ)

Intermezzo and history. If you read di?erent references, you may get confused about the terminology. You may have already come across the term "general linear model" in your introductory Statistics courses or in some reference books. Note, however, that this term refers to a conventional linear regression model for a continuous response variables given continuous and/or categorical predictors. It includes multiple linear regression, as well as ANOVA and ANCOVA. In SAS, such models are ?t by least squares and weighted least squares using (typically) proc glm. HOWEVER, the "generalized linear model" we are speaking about here, refers to the larger class discussed in this section. The ?rst widely used software package for ?tting these models was called GLIM. Because of this program, "GLIM" became a well-accepted abbreviation for generalized linear models, as opposed to "GLM". Since we clari?ed the confusion though, we will continue using "GLM" for generalized linear models since many recent references use it. Today, generalized linear models are ?t by many packages, notably by the SAS proc genmod. (End of intermezzo).

One of the advantages of the full probabilistic speci?cation of the GLM model is that ML Estimation suggests itself as a natural general estimation method. We have to maximize the log-likelihood

2487_Link functions2.png

where β is linked to θ through the link function. Recall that the main parameter- vector of interest is β, the vector of regression coeffcients in the relation ηi = g(µi) = x0

1971_Link functions3.png

There is nowadays, with the availability of modern computing power, seldom any reason to consider estimators of β that are di?erent from the MLE. By using the chain rule, we get for the components of the score function:

1533_Link functions4.png

The (expected) Fisher information matrix is given then by

687_Link functions5.png

The ML Estimator is de?ned by equating the score function to zero. Numerically, the equation is solved by applying iterative procedures which we discuss next.


Related Discussions:- Link functions

Cellular proliferation models, Cellular proliferation models : Models are u...

Cellular proliferation models : Models are used to describe the growth of the  cell populations. One of the example is the deterministic model   where N(t) is the number of cel

Describe prior distribution, Prior distributions : The probability distribu...

Prior distributions : The probability distributions which summarize the information about a random variable or parameter known or supposed at a given time instant, prior to attaini

Correspondence analysis, The method or technique for displaying the relatio...

The method or technique for displaying the relationships between categorical variables in a type of the scatter plot diagram. For two this type of variables displayed in the form o

Non parametric maximum likelihood (npml), Non parametric maximum likelihood...

Non parametric maximum likelihood (NPML) is a likelihood approach which does not need the specification of the full parametric family for the data. Usually, the non parametric max

Randomized encouragement trial, Randomized encouragement trial   is the cl...

Randomized encouragement trial   is the clinical trials in which the participants are encouraged to change their behaviour in a particular manner (or not, if they are allocated to

K-means cluster analysis, K-means cluster analysis is the method of cluste...

K-means cluster analysis is the method of cluster analysis in which from an initial partition of observations into K clusters, each observation in turn is analysed and reassigned,

Define mean squarederror, Mean squarederror is the expected value of squar...

Mean squarederror is the expected value of square of the difference between an estimator and the true value of the parameter. If the estimator is unbiased then the mean of the squ

Cycle hunt analysis, The procedure for clustering variables in the multivar...

The procedure for clustering variables in the multivariate data, which forms the clusters by performing one or other of the below written three operations: * combining two varia

Graphical deception, Graphical deception : Statistical graphics which are n...

Graphical deception : Statistical graphics which are not as honest as they should be. It is relatively simple. To mislead the unwary with the graphical material. For instance, c

Generalized additive models, Models which make use of the smoothing techniq...

Models which make use of the smoothing techniques such as locally weighted regression to identify and represent the possible non-linear relationships between the explanatory and th

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd