Linear Programming, Advanced Statistics

Assignment Help:
1. The production manager of Koulder Refrigerators must decide how many refrigerators to produce in each of the next four months to meet demand at the lowest overall cost. There is a limited capacity in each month although this will increase in month 3. Due to a new contract, costs are expected to increase. The relevant information is provided in the table below.
Month Capacity Demand Cost of production
1 140 110 $80 per unit
2 140 150 $85 per unit
3 160 130 $90 per unit
4 160 140 $95 per unit

Each item that is left at the end of the month and carried over to the next month incurs a carrying cost equal to 10% of the unit cost in that month (e.g. anything left in inventory at the end of month one incurs an $8 cost). Management wants to have at least 30 units left at the end of month four to meet any unexpected demand at that time. A linear program has been developed to help with this. However, this may or may not be totally correct. You should verify that it is the correct formulation before solving the problem. If it is not correct, make any necessary changes to the linear program before solving it on the computer.
X1 = number of units produced in month 1; X2 = number of units produced in month 2;
X3 = number of units produced in month 3; X4 = number of units produced in month 4;
N1 = number of units left at end of month 1; N2 = number of units left at end of month 2;
N3 = number of units left at end of month 3; N4 = number of units left at end of month 4



(Continued on next page)
Minimize cost = 80X1 + 85X2 + 90X3 + 95X4 + 8N1 + 8.5N2 + 9N3 + 9.5N34
X1 < 140
X2 < 140
X3 < 160
X4 < 160
X1 = 110 + N1
X2 + N1 = 150 + N2
X3 + N2 = 130 + N3
X4 + N3 = 140 + N4
N4 > 30
All variables > 0


2. An investment advisory firm manages funds for its numerous clients. The company uses an asset allocation model that recommends the portion of each client’s portfolio to be invested in a growth stock fund, and income fund, and a money market fund. To maintain diversity in each client’s portfolio, the firm places limits on the percentage of each portfolio that may be invested in each of the three funds. General guidelines indicate that the amount invested in the growth fund must be between 20% and 40% of the total portfolio value. Similar percentages for the other two funds stipulate that between 20% and 50% of the total portfolio value must be in the income fund and at least 30% of the total portfolio value must be in the money market fund.
In addition, the company attempts to assess the risk tolerance of each client and adjust the portfolio to meet the needs of the individual investor. For example, Williams just contracted with a new client who has $300,000 to invest, and all of it must be invested. Based on an evaluation of the client’s risk tolerance, Williams assigned a maximum risk index of 0.06 for the client. The firm’s risk indicators show the risk of the growth fund at 0.10, the income fund at 0.07, and the money market fund at 0.01. An overall portfolio risk index is computed as a weighted average of the risk rating for the three funds. The average risk of the portfolio would be the total risk divided by the total investment as shown here:

(average risk) = (total risk)/(total investment).

For example, to calculate the risk of a $100,000 portfolio with 50,000 in the growth fund, 30,000 in the income fund, and 20,000 in the money market fund, the total risk would be 0.10(50,000) + 0.07(30,000) + 0.01(20,000) = 7,300; the average risk would be 7,300/100,000 = 0.073. (NOTE: When putting the risk measure into the linear program, it is better to work with the total risk rather than the average risk to avoid round-off errors.)
Additionally, Williams is currently forecasting annual yields of 8% for the growth fund, 6% for the income fund, and 2% for the money market fund. Based on the information provided, how should the new client be advised to allocate the $300,000 among the growth, income, and money market funds? A linear program has been developed to help with this. However, this may or may not be totally correct. You should verify that it is the correct formulation before solving the problem. If it is not correct, make any necessary changes to the linear program before solving it on the computer.


G = dollars invested in the growth fund
I = dollars invested in the income fund
M = dollars invested in the money market fund

Maximize yield (return) = 0.08G + 0.06I + 0.02M
Subject to:
G + I + M = 300000 Total investment
0.10G + 0.07I + 0.01M < 18000 Total risk (based on 6% average risk)
G > 60000 Minimum in growth fund
G < 120000 Maximum in growth fund
I > 60000 Minimum in income fund
I < 150000 Maximum in income fund
M > 90000 Minimum in money market fund
G, I, M > 0

NOTE: The equality for the total investment constraint simplifies the other constraints. While the total amount invested is G + I + M, this can be replaced by 300000 due to the equality condition. For example, 20% of (G + I + M) becomes 20% of $300,000 or simply $60,000. If this were a less-than-or-equal-to constraint, this could not be done and that constraint would be G > 0.20(G + I + M).

Related Discussions:- Linear Programming

Bayesian confidence interval, Bayesian confidence interval : An interval of...

Bayesian confidence interval : An interval of the posterior distribution which is so that the density of it at any point inside the interval is greater than that of the density at

Assignment, Different approaches to the study of early indian history

Different approaches to the study of early indian history

Combine standard deviation, what is the combine standard deviation height f...

what is the combine standard deviation height from the follwing

Event studies, can you help specify the model for an event study and to int...

can you help specify the model for an event study and to interpret the results/

Fisher''s exact test, The alternative process to make use of the chi-square...

The alternative process to make use of the chi-squared statistic for assessing the independence of the two variables forming a two-by-two contingency table particularly when expect

Alternative hypothesis, The Null Hypothesis - H0: β0 = 0, H0: β 1 = 0, H...

The Null Hypothesis - H0: β0 = 0, H0: β 1 = 0, H0: β 2 = 0, Β i = 0 The Alternative Hypothesis - H1: β0 ≠ 0, H0: β 1 ≠ 0, H0: β 2 ≠ 0, Β i ≠ 0      i =0, 1, 2, 3

Pre analysis data screening, need answers to questions in book advanced and...

need answers to questions in book advanced and multivariate statistical methods

Factorial designs, Designs which permits two or more questions to be addres...

Designs which permits two or more questions to be addressed in the investigation. The easiest factorial design is one in which each of the two treatments or interventions are p

Copulas, Invariant transformations to combine marginal probability function...

Invariant transformations to combine marginal probability functions to form multivariate distributions motivated by the need to enlarge the class of multivariate distributions beyo

Spreading function and scattering function, 1)  Consider an antenna with a ...

1)  Consider an antenna with a pattern: G(θ,φ) = sinn(θ/θ0) cos(θ/θ0)   where θ0 = Π/1.5 (a) What is the 3-dB bandwidth? (b) What is the 10-dB beam width? (c) What is t

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd