Linear inequalities, Algebra

Assignment Help:

To this instance in this chapter we've concentrated on solving out equations.  Now it is time to switch gears a little & begin thinking regarding solving inequalities.  Before we get into solving inequalities we have to go over a couple of the basics first.

It is assumed that you know that

                                                         a < b

refer that a is any number which is strictly less that b. It is also supposed that you know that

                                                         a ≥ b

means that a is any number that is either strictly bigger than b or is exactly equivalent to b.  Alike it is supposed that you know how to deal along with the remaining two inequalities. > (greater than) and ≤ (less than or equal to).

What we desire to discuss is some notational facts and some subtleties which sometimes get students while the really start working with inequalities.

First, recall that while we say that a is less than b we refer that a is to the left of b on a number line.  Thus,

                                                      -1000 > 0

is a true inequality.

After that, don't forget how to appropriately interpret ≤ and ≥ .  Both of the following are true inequalities.

                                    4 ≤ 4                                                   -6 ≤ 4

In the primary case 4 is equivalent to 4 and thus it is "less than or equal" to 4.  In the second case -6 is strictly less than 4 & so it is "less than or equal" to 4. The most common fault is to select that the first inequality is not a true inequality.  Also be careful to not take this interpretation & translate it to < and/or >.  For instance,

                                                  4 < 4

is not a true inequality as 4 is equivalent to 4 and not less than 4.

At last, we will be seeing several double inequalities .


Related Discussions:- Linear inequalities

Fact of augmented matrix, Fact Following any system of equations there ...

Fact Following any system of equations there are accurately three possibilities for the solution. 1.   There will not be a solution. 2.   There will be just one solution.

Exponential functions, Definition of an exponential function If b is an...

Definition of an exponential function If b is any number like that b = 0 and b ≠ 1 then an exponential function is function in the form,

College algebra, how to solve the sum of a polynomials

how to solve the sum of a polynomials

Karen, I need help solving -5=1/4(4+20r)-8r

I need help solving -5=1/4(4+20r)-8r

Example of equations with more than one variable, y = 4 - 3x /1 + 8x for x....

y = 4 - 3x /1 + 8x for x. Solution This one is very alike to the previous instance.  Here is the work for this problem. y + 8xy = 4 - 3x 8xy + 3x = 4 - y X(8 y +3)

Solve out given systems, Example 2 Solve out following systems of equation...

Example 2 Solve out following systems of equations. 3x + y - 2z = 2 x - 2 y + z = 3 2x - y - 3z = 3 Solution Firstly write down the augmented matrix for this syst

Linear equation in two variables, 2x+y/x+3y=-1/7and 7x+36y=47/3 hence find ...

2x+y/x+3y=-1/7and 7x+36y=47/3 hence find p if xy=p=x/y

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd