Linear inequalities, Algebra

Assignment Help:

To this instance in this chapter we've concentrated on solving out equations.  Now it is time to switch gears a little & begin thinking regarding solving inequalities.  Before we get into solving inequalities we have to go over a couple of the basics first.

It is assumed that you know that

                                                         a < b

refer that a is any number which is strictly less that b. It is also supposed that you know that

                                                         a ≥ b

means that a is any number that is either strictly bigger than b or is exactly equivalent to b.  Alike it is supposed that you know how to deal along with the remaining two inequalities. > (greater than) and ≤ (less than or equal to).

What we desire to discuss is some notational facts and some subtleties which sometimes get students while the really start working with inequalities.

First, recall that while we say that a is less than b we refer that a is to the left of b on a number line.  Thus,

                                                      -1000 > 0

is a true inequality.

After that, don't forget how to appropriately interpret ≤ and ≥ .  Both of the following are true inequalities.

                                    4 ≤ 4                                                   -6 ≤ 4

In the primary case 4 is equivalent to 4 and thus it is "less than or equal" to 4.  In the second case -6 is strictly less than 4 & so it is "less than or equal" to 4. The most common fault is to select that the first inequality is not a true inequality.  Also be careful to not take this interpretation & translate it to < and/or >.  For instance,

                                                  4 < 4

is not a true inequality as 4 is equivalent to 4 and not less than 4.

At last, we will be seeing several double inequalities .


Related Discussions:- Linear inequalities

Rational exponents, what is rational exponents and give some examples?

what is rational exponents and give some examples?

math, Paula weighs 110 pounds, and Donna weighs p pounds. Paula weighs mor...

Paula weighs 110 pounds, and Donna weighs p pounds. Paula weighs more than Donna. Which expression shows the difference in their weights?

How do I solve, Suppose you are provided with a geometric sequence. How can...

Suppose you are provided with a geometric sequence. How can you find the sum of n terms of the sequence without having to add all of the terms?

Pythagorean theorem, how do you find the value of x in simplified radical?

how do you find the value of x in simplified radical?

Equation, If ( x+1/x)2=3 then find the value of (x72+x66+x54+x36+x24+x6+1)

If ( x+1/x)2=3 then find the value of (x72+x66+x54+x36+x24+x6+1)

Word Problem, A student rented a bicycle for a one-time fee of $12.00 and t...

A student rented a bicycle for a one-time fee of $12.00 and then a charge of $0.85 per day.She paid $28.15 for the use of the bicycle. How many days did she keep it?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd