Linear inequalities, Algebra

Assignment Help:

To this instance in this chapter we've concentrated on solving out equations.  Now it is time to switch gears a little & begin thinking regarding solving inequalities.  Before we get into solving inequalities we have to go over a couple of the basics first.

It is assumed that you know that

                                                         a < b

refer that a is any number which is strictly less that b. It is also supposed that you know that

                                                         a ≥ b

means that a is any number that is either strictly bigger than b or is exactly equivalent to b.  Alike it is supposed that you know how to deal along with the remaining two inequalities. > (greater than) and ≤ (less than or equal to).

What we desire to discuss is some notational facts and some subtleties which sometimes get students while the really start working with inequalities.

First, recall that while we say that a is less than b we refer that a is to the left of b on a number line.  Thus,

                                                      -1000 > 0

is a true inequality.

After that, don't forget how to appropriately interpret ≤ and ≥ .  Both of the following are true inequalities.

                                    4 ≤ 4                                                   -6 ≤ 4

In the primary case 4 is equivalent to 4 and thus it is "less than or equal" to 4.  In the second case -6 is strictly less than 4 & so it is "less than or equal" to 4. The most common fault is to select that the first inequality is not a true inequality.  Also be careful to not take this interpretation & translate it to < and/or >.  For instance,

                                                  4 < 4

is not a true inequality as 4 is equivalent to 4 and not less than 4.

At last, we will be seeing several double inequalities .


Related Discussions:- Linear inequalities

Process to solve polynomial inequalities, Solve x 2 -10 Solution ...

Solve x 2 -10 Solution There is a quite simple procedure to solving these.  If you can memorize it you'll always be able to solve these kinds of inequalities. Step 1:

Solving quadratic equations, In the earlier two sections we've talked quite...

In the earlier two sections we've talked quite a bit regarding solving quadratic equations.  A logical question to ask at this point is which method has to we employ to solve a giv

11th grade student, is negative 6 less than 2x minus 4 less than 13 an and ...

is negative 6 less than 2x minus 4 less than 13 an and or statement

Inequality problem, why is the inequality symbol must be reversed when both...

why is the inequality symbol must be reversed when both sides of a inequality are multiplied or divided by a negative number

Find the inverse of a given function, Given f ( x ) = 3x - 2 find f -1 ( ...

Given f ( x ) = 3x - 2 find f -1 ( x ). Solution Now, already we know what the inverse to this function is as already we've done some work with it.  Though, it would be n

Review, I need a full review on the subject Algebra1 Because i am fixing to...

I need a full review on the subject Algebra1 Because i am fixing to take the states test.

Cube of a binomial, how can we solve if the given is negative?

how can we solve if the given is negative?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd