Linear code with generator matrix , Mathematics

Assignment Help:

1. Consider the code of size 4 (4 codewords) and of length 10 with codewords listed below.

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1

1 1 1 1 1 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1

a) Is this code a linear code? b) What is the minimum distance of the code and how many errors can the code correct? c) What is the union bound on the decoded error probability of this code when the channel is a binary symmetric channel with crossover probability p?

(The channel is also memoryless; that is any bit is in error independent of the all other bits being in error or not). d) Find a decoding rule that requires for any particular received vector y = (y1, y2, . . . , y10) two computations of the Hamming distance between two vectors of length 5 to determine which codeword was sent. (The decoding rule must be such that if the number of errors is less than the correct answer to part (b) the decoding rule will be able to correct these errors).

2. (a) The Hamming code has the following parity check matrix

747_matrix1.png

If the received vector is r = (0,1,0,1,1,1,1) find the most likely transmitted codeword (over a binary symmetric channel with error probability less than 1/2). What is the error correcting capability of the code.

(b) For the linear code with generator matrix shown below find the minimum distance of the code, the error correcting capability of the code and the code rate. Find a upper bound on the probability of a codeword decoding error on a binary symmetric channel.

2475_matrix2.png

3. Code 4 in the lecture notes (on line version) contains 32 codewords of length 15 with minimum distance 7.

(a) Simulate a communication system with this code on an additive white Gaussian noise channel. Count (at least) 100 errors and plot the error probability for signal-to-noise ratios (Eb/N0) from 0 to 6dB in steps of (no more than) 0.5dB.

(b) Determine the union bound on the performance and also plot (on the same plot as part

(a)) the union bound.

(c) Simulate the performance of a hard decision decoder that always decodes to the closest codeword. Plot the codeword error probability (on the same plot as (a) and (b)).

(d) Plot the union bound to the performance of a hard decision decoder (of part (c)).

(e) Simulate the performance of a bounded distance decoder that only corrects 0,1,2 or 3 errors. Determine the probability of choosing the wrong codeword and the probability that the received vector is not within distance 3 of any codeword (this is called a decoding failure).

(f) For a bounded distance decoder and a hard decision channel, i.e. a BSC, analyze (provide a formula) for the probability the decoder does not output the correct codeword.


Related Discussions:- Linear code with generator matrix

Solid mensuration, given dimensions: 130cm, 180cm, and 190cm is to be divid...

given dimensions: 130cm, 180cm, and 190cm is to be divided by a line bisecting the longest side shown from its opposite vertex. what''s the area adjacent to 180cm? ;

Example of multiplying decimals, Example of Multiplying Decimals: Exa...

Example of Multiplying Decimals: Example:  0.45 x 10 = 4.5.  Same, while multiplying a decimal through 100, 1000, and 10,000, move the decimal point to the right the similar

Sets, creative assignment about sets

creative assignment about sets

Calculate time interval, From top of a tower a stone is thrown up and it re...

From top of a tower a stone is thrown up and it reaches the ground in time t1. A second stone is thrown down with the same speed and it reaches the ground in t2. A third stone is r

Method of cylinders or method of shells, Method of cylinders or method of s...

Method of cylinders or method of shells The formula for the area in all of the cases will be,                                                        A = 2 ∏ ( radius ) (heig

Method of disks or the method of rings, Method of disks or the method of ri...

Method of disks or the method of rings One of the simple methods for getting the cross-sectional area is to cut the object perpendicular to the axis of rotation.  Carrying out

If a sequence is bounded and monotonic then it is convergent, Theorem ...

Theorem If {a n } is bounded and monotonic then { a n } is convergent.  Be cautious to not misuse this theorem.  It does not state that if a sequence is not bounded and/or

Math World Problem, The ratio of gasoline to oil needed to run a chain-saw ...

The ratio of gasoline to oil needed to run a chain-saw is 16:1. If you have 3.5 mL of oil, how many millilitres of gasoline must you add to get the proper mixture?

Geometry, how to do proving of rectilinear figures?..

how to do proving of rectilinear figures?..

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd