Linear approximations, Mathematics

Assignment Help:

Linear Approximations

In this section we will look at an application not of derivatives but of the tangent line to a function. Certainly, to get the tangent line we do have to take derivatives, thus in some way this is an application of derivatives as well.

Given a function, f ( x ) , we can determine its tangent at x = a .  The equation of the tangent line, that we'll call L ( x ) for this discussion, is,

                            L ( x ) = f ( a ) + f ′ ( a ) ( x - a )

 Take a look at the given graph of a function & its tangent line.

2178_l hospital limit.png

From the graph we can illustrates that near x = a the tangent line & the function have closely the similar graph.  On instance we will utilizes the tangent line, L ( x ) , as an approximation to the function, f ( x ) , near x = a .  In these cases we call the tangent line the linear approximation to the function at x = a .


Related Discussions:- Linear approximations

Jordan needs help, carlie is now fivetimes as old as henry. in nine years ...

carlie is now fivetimes as old as henry. in nine years her age will be twice henry''s age then. how old is carly now

#titleBUsiness calculus.., If $2,000 is invested in a savings account offer...

If $2,000 is invested in a savings account offering interest at a rate of 3.5% per year, compounded continuously, how fast is the balance growing after 8 years? (Round your answer

Trigomometrical, ABCD is a rhombus. the sides of the rhombus are 8cm long ....

ABCD is a rhombus. the sides of the rhombus are 8cm long .one of its diagonals is 12cm .find the angels of the rhombus

Find out the total number of pounds of coffee purchased, Megan bought x pou...

Megan bought x pounds of coffee in which cost $3 per pound and 18 pounds of coffee at $2.50 per pound for the company picnic. Find out the total number of pounds of coffee purchase

Proof of the properties of vector arithmetic, Proof of the Properties of ve...

Proof of the Properties of vector arithmetic Proof of a(v → + w → ) = av → + aw → We will begin with the two vectors, v → = (v 1 , v 2 ,..., v n )and w? = w

System of first order equations, Consider the Van der Pol oscillator x′′...

Consider the Van der Pol oscillator x′′- µ(1 - x 2 )x′ + x = 0 (a) Write this equation as a system of first order equations (b) Taking µ = 2, use MatLab's routine ode45 to

The volume and surface area of this solid , The region bounded by y=e -x a...

The region bounded by y=e -x and the x-axis among x = 0 and x = 1 is revolved around the x-axis. Determine the volume and surface area of this solid of revolution.

Trigonometry, if tan theta =1,find the value of sin4 theta + cos4 theta

if tan theta =1,find the value of sin4 theta + cos4 theta

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd