Linear approximations, Mathematics

Assignment Help:

Linear Approximations

In this section we will look at an application not of derivatives but of the tangent line to a function. Certainly, to get the tangent line we do have to take derivatives, thus in some way this is an application of derivatives as well.

Given a function, f ( x ) , we can determine its tangent at x = a .  The equation of the tangent line, that we'll call L ( x ) for this discussion, is,

                            L ( x ) = f ( a ) + f ′ ( a ) ( x - a )

 Take a look at the given graph of a function & its tangent line.

2178_l hospital limit.png

From the graph we can illustrates that near x = a the tangent line & the function have closely the similar graph.  On instance we will utilizes the tangent line, L ( x ) , as an approximation to the function, f ( x ) , near x = a .  In these cases we call the tangent line the linear approximation to the function at x = a .


Related Discussions:- Linear approximations

Stakeholders, what is the benefit for stakeholders or disadvantage in a mon...

what is the benefit for stakeholders or disadvantage in a monoply

Trignometry, Sin3x ? Solution) THE FORMULA IS RIGHT ,SO sin3x=3sin...

Sin3x ? Solution) THE FORMULA IS RIGHT ,SO sin3x=3sinx-4sin 3 x

Linear algebra, Let A be an n×n matrix. Then Show that the set U = {u?R^n ...

Let A be an n×n matrix. Then Show that the set U = {u?R^n : Au = -3un} is a Subspace of R^n

Calcukus, A drug has a decay rate of k = - ¼ ln(¾) / hr. How soon after an ...

A drug has a decay rate of k = - ¼ ln(¾) / hr. How soon after an initial dose of 1600 mg will the drug reach its minimum therapeutic value of 900 mg in the body?

Steel bar to make a hard surface, Take the carburizing of a steel bar to ma...

Take the carburizing of a steel bar to make a hard surface. To obtain the desired hardness, we require to control the diffusion of carbon into the surface and the phases obtained d

Utilize the chain rule to differentiate, Chain Rule : Assume that we have ...

Chain Rule : Assume that we have two functions f(x) & g(x) and they both are differentiable. 1.   If we define F ( x ) = ( f o g ) ( x ) then the derivative of F(x) is,

H, 6987+746-212*7665

6987+746-212*7665

Progressions, We will look at three types of progressions called Ar...

We will look at three types of progressions called Arithmetic, Geometric and Harmonic Progression. Before we start looking at the intricacies of these let us unders

Linear algebra, solve for k such that the system 4x+ky=6 kx+y=-3

solve for k such that the system 4x+ky=6 kx+y=-3

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd