Linear approximations, Mathematics

Assignment Help:

Linear Approximations

In this section we will look at an application not of derivatives but of the tangent line to a function. Certainly, to get the tangent line we do have to take derivatives, thus in some way this is an application of derivatives as well.

Given a function, f ( x ) , we can determine its tangent at x = a .  The equation of the tangent line, that we'll call L ( x ) for this discussion, is,

                            L ( x ) = f ( a ) + f ′ ( a ) ( x - a )

 Take a look at the given graph of a function & its tangent line.

2178_l hospital limit.png

From the graph we can illustrates that near x = a the tangent line & the function have closely the similar graph.  On instance we will utilizes the tangent line, L ( x ) , as an approximation to the function, f ( x ) , near x = a .  In these cases we call the tangent line the linear approximation to the function at x = a .


Related Discussions:- Linear approximations

How much did sally earn if she worked 48 hours, Sally gets paid x dollars p...

Sally gets paid x dollars per hour for a 40-hour work week and y dollars for every hour she works over 40 hours. How much did Sally earn if she worked 48 hours? Since she worke

Reduction of order - fundamental set of solutions, Given that 2t 2 y′′ ...

Given that 2t 2 y′′ + ty′ - 3 y = 0 Show that this given solution are form a fundamental set of solutions for the differential equation? Solution The two solutions f

ALGEBRA, FIND PRODUCT (-41)*(102)

FIND PRODUCT (-41)*(102)

Rectilinear figure, what is a redtilinear figure? like what are for the req...

what is a redtilinear figure? like what are for the requirments for a shape to be called that? example a regular polygon has all sides and angles equal. i cant find that kind of dr

Homotopy, prove same homotopy type is an equivalent relation

prove same homotopy type is an equivalent relation

Probability: determine the optimal strategy , On a picnic outing, 2 two-pe...

On a picnic outing, 2 two-person teams are playing hide-and-seek. There are four  hiding locations (A, B, C, and D), and the two members of the hiding team can hide separately in a

Laplace transforms, As we saw in the previous section computing Laplace tra...

As we saw in the previous section computing Laplace transforms directly can be quite complex. Generally we just utilize a table of transforms when actually calculating Laplace tran

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd