Linear approximations, Mathematics

Assignment Help:

Linear Approximations

In this section we will look at an application not of derivatives but of the tangent line to a function. Certainly, to get the tangent line we do have to take derivatives, thus in some way this is an application of derivatives as well.

Given a function, f ( x ) , we can determine its tangent at x = a .  The equation of the tangent line, that we'll call L ( x ) for this discussion, is,

                            L ( x ) = f ( a ) + f ′ ( a ) ( x - a )

 Take a look at the given graph of a function & its tangent line.

2178_l hospital limit.png

From the graph we can illustrates that near x = a the tangent line & the function have closely the similar graph.  On instance we will utilizes the tangent line, L ( x ) , as an approximation to the function, f ( x ) , near x = a .  In these cases we call the tangent line the linear approximation to the function at x = a .


Related Discussions:- Linear approximations

0^0, what is the value of zero to the power raised to zero?

what is the value of zero to the power raised to zero?

The shape of a graph, The Shape of a Graph, Part II : In previous we saw h...

The Shape of a Graph, Part II : In previous we saw how we could use the first derivative of a function to obtain some information regarding the graph of a function.  In this secti

Explain adding negative fraction, Explain Adding Negative Fraction? To...

Explain Adding Negative Fraction? To add negative fractions: 1. Find a common denominator. 2. Change the fractions to their equivalents, so that they have common denominators

.fractions, what is the difference between North America''s part of the tot...

what is the difference between North America''s part of the total population and Africa''s part

Solve the radical form, Simplify following. Suppose that x, y, & z are posi...

Simplify following. Suppose that x, y, & z are positive.                      √ y 7 Solution In this case the exponent (7) is larger than the index (2) and thus the fir

Simultaneous equations by substitution, Simultaneous equations by substitut...

Simultaneous equations by substitution: Solve the subsequent simultaneous equations by substitution. 3x + 4y = 6      5x + 3y = -1 Solution: Solve for x: 3x = 6

Maximum and minimum values, Find all the local maximum and minimum values a...

Find all the local maximum and minimum values and saddle points of the function f(x, y) = x 2 - xy + y 2 + 9x - 6y + 10

Quotient rule, Quotient Rule : If the two functions f(x) & g(x) are differ...

Quotient Rule : If the two functions f(x) & g(x) are differentiable (that means the derivative exist) then the quotient is differentiable and,

Simplification, how do we answer questions with fraction mixed. what are th...

how do we answer questions with fraction mixed. what are the easier ways to do it

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd