Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Linear Approximations
In this section we will look at an application not of derivatives but of the tangent line to a function. Certainly, to get the tangent line we do have to take derivatives, thus in some way this is an application of derivatives as well.
Given a function, f ( x ) , we can determine its tangent at x = a . The equation of the tangent line, that we'll call L ( x ) for this discussion, is,
L ( x ) = f ( a ) + f ′ ( a ) ( x - a )
Take a look at the given graph of a function & its tangent line.
From the graph we can illustrates that near x = a the tangent line & the function have closely the similar graph. On instance we will utilizes the tangent line, L ( x ) , as an approximation to the function, f ( x ) , near x = a . In these cases we call the tangent line the linear approximation to the function at x = a .
3v2
In a periscope, a pair of mirrors is mounted parallel to each other as given. The path of light becomes a transversal. If ∠2 evaluate 50°, what is the evaluation of ∠3? a. 50°
Fermat Catalan Conjecture
Systems of Equations Revisited We require doing a quick revisit of systems of equations. Let's establish with a general system of equations. a 11 x 1 + a 12 x 2 +......
what is a liter
i need help with 3x+5y=7 2x-5y=8
which shows the rate 12 inches of rain in 6 hours as a unit rate
two circle of radius of 2cm &3cm &diameter of 8cm dram common tangent
how to compare fractions
how do you do hard math!!!
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd