Limits at infinity, part i, Mathematics

Assignment Help:

Limits At Infinity, Part I : In the earlier section we saw limits which were infinity and now it's time to take a look at limits at infinity.  Through limits at infinity we mean one of the given two limits.

328_limit70.png

In other terms, we are going to be looking at what happens to a function if we allow x get extremely large in either the +ve or -ve sense. Also, as we'll rapidly see, these limits may also have infinity as a value.

Firstly, let's note that the set of Facts through the Infinite Limit section also hold if the replace the1395_limit71.png   .  The proof of this is closely identical to the proof of the original set of facts along with only minor modifications to manage the change in the limit and hence is left to the reader. Actually, many of the limits that we're going to be looking at we will require the following two facts.

Fact 1

1. If r means to a positive rational number and c means to any real number then,

1381_limit72.png

2. If r is a positive rational number, c is any real number and xr   is explained for x < 0 then,

2426_limit73.png

The first part of this fact has to make sense if you think regarding it.  Since we are requiring r > 0 we know that xr will stay in the denominator.  Next as we enhance x then xr will also enhance.  So, we have a constant divided by an increasingly large number and hence the result will be increasingly small.  Or, in the limit we will obtain zero.

The second part is closely identical except we require worrying about xr being explained for negative x. Here, this condition is to avoid cases such as r =  1/2 .  If this r were let then we'd be taking the square root of -ve numbers which would be complex and we desire to avoid that at this level.

Note that the sign of c will not influence the answer.  In spite of of the sign of c still we'll have a constant divided by a very large number that will result in a extremely small number and the larger x get the smaller the fraction gets. The sign of c will influence which direction the fraction approaches zero (i.e. from the positive or negative side) however it still approaches zero.

Let's begin with the examples with one that will lead us to a nice idea which we'll employ on a regular basis regarding limits at infinity for polynomials.


Related Discussions:- Limits at infinity, part i

Draw a graph model with the adjacency matrix, QUESTION (a) Draw a graph...

QUESTION (a) Draw a graph model with the following adjacency matrix.                         (b) The diagram below shows different cities labelled a to g and z. Also sh

Business applications, Business Applications In this section let's tak...

Business Applications In this section let's take a look at some applications of derivatives in the business world.  For the most of the part these are actually applications wh

Mathematical concepts and ideas , These experiences should be related to th...

These experiences should be related to the mathematical concepts and ideas that we teach them. Only then will these ideas appear relevant to the children, and be absorbed by them

Equal matrices, Is this given matrices are called equal Matrices?

Is this given matrices are called equal Matrices?

Order of a differential equation, The order of a differential equation is t...

The order of a differential equation is the huge derivative there in the differential equation. Under the differential equations as listed above in equation (3) is a first order di

Number system, NATURAL NUMBERS The numbers 1, 2, 3, 4.... Are called as...

NATURAL NUMBERS The numbers 1, 2, 3, 4.... Are called as natural numbers, their set is shown by N. Hence N = {1, 2, 3, 4, 5....} WHOLE NUMBERS The numbers 0, 1, 2, 3, 4

Concepts of sampling error, Use the concepts of sampling error and z- scor...

Use the concepts of sampling error and z- scores to explain the concept of distribution of sample means.

Direction field for the differential equation, We require to check the deri...

We require to check the derivative thus let's use v = 60. Plugging it in (2) provides the slope of the tangent line as -1.96, or negative. Thus, for all values of v > 50 we will ha

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd