Limits at infinity, part i, Mathematics

Assignment Help:

Limits At Infinity, Part I : In the earlier section we saw limits which were infinity and now it's time to take a look at limits at infinity.  Through limits at infinity we mean one of the given two limits.

328_limit70.png

In other terms, we are going to be looking at what happens to a function if we allow x get extremely large in either the +ve or -ve sense. Also, as we'll rapidly see, these limits may also have infinity as a value.

Firstly, let's note that the set of Facts through the Infinite Limit section also hold if the replace the1395_limit71.png   .  The proof of this is closely identical to the proof of the original set of facts along with only minor modifications to manage the change in the limit and hence is left to the reader. Actually, many of the limits that we're going to be looking at we will require the following two facts.

Fact 1

1. If r means to a positive rational number and c means to any real number then,

1381_limit72.png

2. If r is a positive rational number, c is any real number and xr   is explained for x < 0 then,

2426_limit73.png

The first part of this fact has to make sense if you think regarding it.  Since we are requiring r > 0 we know that xr will stay in the denominator.  Next as we enhance x then xr will also enhance.  So, we have a constant divided by an increasingly large number and hence the result will be increasingly small.  Or, in the limit we will obtain zero.

The second part is closely identical except we require worrying about xr being explained for negative x. Here, this condition is to avoid cases such as r =  1/2 .  If this r were let then we'd be taking the square root of -ve numbers which would be complex and we desire to avoid that at this level.

Note that the sign of c will not influence the answer.  In spite of of the sign of c still we'll have a constant divided by a very large number that will result in a extremely small number and the larger x get the smaller the fraction gets. The sign of c will influence which direction the fraction approaches zero (i.e. from the positive or negative side) however it still approaches zero.

Let's begin with the examples with one that will lead us to a nice idea which we'll employ on a regular basis regarding limits at infinity for polynomials.


Related Discussions:- Limits at infinity, part i

Probability, Probability -Probability is an extremely popular concept ...

Probability -Probability is an extremely popular concept in business management. Since it covers the risks such may be included in certain business situations. This is a fact

Ratios....., if the ratio of boys to girls ism 3 to 5, then what percent of...

if the ratio of boys to girls ism 3 to 5, then what percent of the students are boys

Multiplication of two complex numbers, Multiply the given below and write t...

Multiply the given below and write the answer in standard form. (2 - √-100 )(1 + √-36 ) Solution If we have to multiply this out in its present form we would get,  (2 -

Find the rate at which its tip is moving, If the minute hand of a big clock...

If the minute hand of a big clock is 1.05 m long, find the rate at which its tip is moving in cm per minute.

Free Assignment Test Online, Well, my uncle want me to tutor him in mathema...

Well, my uncle want me to tutor him in mathematics. But, the problem is I don''t know what he already knows about math. It for his Compass Test when he go back to school in the spr

International marketing, what are challenges and solution of international ...

what are challenges and solution of international marketing

Least common denominator using primes, Least Common Denominator Using Prime...

Least Common Denominator Using Primes: A prime number is a whole number (integer) whose only factors are itself and one. So the first prime numbers are given as follows: 1,

Calculate the slope of the line, Calculate the slope of the line: Exa...

Calculate the slope of the line: Example: calculate  the  slope  of  the  line  whose  equation  is  y  =  2x  +  3  and  whose y-intercept is (0,3). Solution:    y =

Linear Systems, Find the solution to the following system of equations usin...

Find the solution to the following system of equations using substitution:

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd