Limits at infinity, part i, Mathematics

Assignment Help:

Limits At Infinity, Part I : In the earlier section we saw limits which were infinity and now it's time to take a look at limits at infinity.  Through limits at infinity we mean one of the given two limits.

328_limit70.png

In other terms, we are going to be looking at what happens to a function if we allow x get extremely large in either the +ve or -ve sense. Also, as we'll rapidly see, these limits may also have infinity as a value.

Firstly, let's note that the set of Facts through the Infinite Limit section also hold if the replace the1395_limit71.png   .  The proof of this is closely identical to the proof of the original set of facts along with only minor modifications to manage the change in the limit and hence is left to the reader. Actually, many of the limits that we're going to be looking at we will require the following two facts.

Fact 1

1. If r means to a positive rational number and c means to any real number then,

1381_limit72.png

2. If r is a positive rational number, c is any real number and xr   is explained for x < 0 then,

2426_limit73.png

The first part of this fact has to make sense if you think regarding it.  Since we are requiring r > 0 we know that xr will stay in the denominator.  Next as we enhance x then xr will also enhance.  So, we have a constant divided by an increasingly large number and hence the result will be increasingly small.  Or, in the limit we will obtain zero.

The second part is closely identical except we require worrying about xr being explained for negative x. Here, this condition is to avoid cases such as r =  1/2 .  If this r were let then we'd be taking the square root of -ve numbers which would be complex and we desire to avoid that at this level.

Note that the sign of c will not influence the answer.  In spite of of the sign of c still we'll have a constant divided by a very large number that will result in a extremely small number and the larger x get the smaller the fraction gets. The sign of c will influence which direction the fraction approaches zero (i.e. from the positive or negative side) however it still approaches zero.

Let's begin with the examples with one that will lead us to a nice idea which we'll employ on a regular basis regarding limits at infinity for polynomials.


Related Discussions:- Limits at infinity, part i

Which general famously stated ''i shall return'', Which general famously st...

Which general famously stated 'I shall return'? A. Bull Halsey B. George Patton C. Douglas MacArthur D. Omar Bradley

Area in polar cordinates, find the area of the region within the cardioid r...

find the area of the region within the cardioid r=1-cos

Show that 571 is a prime number, Show that 571 is a prime number. Ans: ...

Show that 571 is a prime number. Ans:    Let x=571⇒√x=√571 Now 571 lies between the perfect squares of  (23)2 and (24)2 Prime numbers less than 24 are 2,3,5,7,11,13,17,1

Find the sum-of-products expression for the function, Find the sum-of-produ...

Find the sum-of-products expression for subsequent function,  F (x,y,z) = y + Z‾ Ans: The sum of the product expression for the following function f is DNF (disjunc

The cost of renting a bike at the local bike is y = 2x + 2, The cost of re...

The cost of renting a bike at the local bike shop can be represented through the equation y = 2x + 2, where y is the total cost and x is the number of hours the bike is rented. Whi

Illustrate median with example, Q. Illustrate Median with example? Ans...

Q. Illustrate Median with example? Ans. The median of a data set is the middle value (or the average of the two middle terms if there are an even number of data values) wh

Determine the angle, In parallelogram ABCD, m∠A = 3x + 10 and m∠D = 2x + 30...

In parallelogram ABCD, m∠A = 3x + 10 and m∠D = 2x + 30, Determine the m∠A. a. 70° b. 40° c. 86° d. 94° d. Adjacent angles in a parallelogram are supplementary. ∠A a

Differential equations, Find the normalized differential equation which has...

Find the normalized differential equation which has {x, xex} as its fundamental set

Dividing mixed numbers, Dividing Mixed Numbers Dividing mixed numbers i...

Dividing Mixed Numbers Dividing mixed numbers is a 3-step process: 1. Convert the mixed numbers to improper fractions. 2. Divide the fractions 3. Convert the result ba

Trigonometry, Prove: 1/cos2A+sin2A/cos2A=sinA+cosA/cosA-sinA

Prove: 1/cos2A+sin2A/cos2A=sinA+cosA/cosA-sinA

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd