Limits at infinity, part i, Mathematics

Assignment Help:

Limits At Infinity, Part I : In the earlier section we saw limits which were infinity and now it's time to take a look at limits at infinity.  Through limits at infinity we mean one of the given two limits.

328_limit70.png

In other terms, we are going to be looking at what happens to a function if we allow x get extremely large in either the +ve or -ve sense. Also, as we'll rapidly see, these limits may also have infinity as a value.

Firstly, let's note that the set of Facts through the Infinite Limit section also hold if the replace the1395_limit71.png   .  The proof of this is closely identical to the proof of the original set of facts along with only minor modifications to manage the change in the limit and hence is left to the reader. Actually, many of the limits that we're going to be looking at we will require the following two facts.

Fact 1

1. If r means to a positive rational number and c means to any real number then,

1381_limit72.png

2. If r is a positive rational number, c is any real number and xr   is explained for x < 0 then,

2426_limit73.png

The first part of this fact has to make sense if you think regarding it.  Since we are requiring r > 0 we know that xr will stay in the denominator.  Next as we enhance x then xr will also enhance.  So, we have a constant divided by an increasingly large number and hence the result will be increasingly small.  Or, in the limit we will obtain zero.

The second part is closely identical except we require worrying about xr being explained for negative x. Here, this condition is to avoid cases such as r =  1/2 .  If this r were let then we'd be taking the square root of -ve numbers which would be complex and we desire to avoid that at this level.

Note that the sign of c will not influence the answer.  In spite of of the sign of c still we'll have a constant divided by a very large number that will result in a extremely small number and the larger x get the smaller the fraction gets. The sign of c will influence which direction the fraction approaches zero (i.e. from the positive or negative side) however it still approaches zero.

Let's begin with the examples with one that will lead us to a nice idea which we'll employ on a regular basis regarding limits at infinity for polynomials.


Related Discussions:- Limits at infinity, part i

Find out the minimum distance from the origin, Problem 1. Find the maximum...

Problem 1. Find the maximum and the minimum distance from the origin to the ellipse x 2 + xy + y 2 = 3. Hints: (i) Use x 2 + y 2 as your objective function; (ii) You c

Type i and type ii errors-rejection and acceptance regions, Type I and type...

Type I and type II errors When testing hypothesis (H 0 ) and deciding to either reject or accept a null hypothesis, there are four possible happenings. a) Acceptance of a t

The point which divides a gven line - segment externally, The point which d...

The point which divides a gven line - segment externally: Construction : i )Draw BX making an actue angle at B. ii) Starting from B mark three equal points on BX as sh

How many people said that red was their favorite color, In a recent survey ...

In a recent survey of 700 people, 15% said that red was their favorite color. How many people said that red was their favorite color? Find out 15% of 700 through multiplying 70

Test of hypothesis on proportions, Test Of Hypothesis On Proportions It...

Test Of Hypothesis On Proportions It follows a similar method to the one for means except that the standard error utilized in this case: Sp = √(pq/n)  Z score is computed

Mean is 8.32 find the median, In a frequency distribution mode is 7.88, mea...

In a frequency distribution mode is 7.88, mean is 8.32 find the median.  (Ans: 8.17) Ans:  Mode = 3 median - 2 mean 7.88 = 3 median - 2 x 8.32 7.88 +16.64 = 3 median

Initial value problems, Write a Matlab function MyIVP that solves an initia...

Write a Matlab function MyIVP that solves an initial-value problem (IVP) for a system of ordinary differential equations (ODEs) of the form x ?(t) = f (t, x(t)), where f : R × Rn ?

What difference among the areas of the two sections of a, If the areas of t...

If the areas of two sections of a garden are 6a + 2 and 5a, what is the difference among the areas of the two sections within terms of a? Because the question asks for the diff

Application of statistics-economic order quantities (eoq), economic order q...

economic order quantities (EOQ) Statistics may be utilized in ordering or making economic order quantities as EOQ. It is significant for a business manager to understand that

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd