Limits, Mathematics

Assignment Help:

Limits

The concept of a limit is fundamental in calculus. Often, we are interested to know the behavior of f(x) as the independent variable x approaches some particular point 'a'. The question is, if we give values to x which are nearer and nearer to 'a', will the values of f(x) come nearer and nearer to any particular value? Suppose we define a function f(x) as:

                            f(x) = 2x

It can be seen that as we give values to x which are nearer and nearer to 0, then the value of f(x) also comes nearer and nearer to 0.

If x approaches a value 'a', f(x) approaches some number L, then we say that the limit of f(x) approaches L. This is symbolically written as

1669_limit.png        is to be read as 'x approaches a'.

Sometimes we may allow x to take values which are larger and larger, without any limit. This is symbolically written as  1954_limit1.png (read as 'x approaches infinity'). If f(x) approaches a limit L as  1967_limit2.png , then we write

1129_limit3.png

In some cases, it may so happen that as x approaches a value, the value of the function f(x) may become larger and larger without any limit. This is symbolically written as:

21_limit4.png

Example 

Suppose f(x) = 2x2 - 1

As x approaches value 1, f(x) approaches the value 1,

739_limit5.png

This is graphically represented below.

Figure 

1862_limit6.png


Related Discussions:- Limits

Determine the domain and range of function, Determine the domain of each of...

Determine the domain of each of the following functions.                         f( x ) = x - 4 / x 2 - 2 x -15 Solution With this problem we have to avoid division by

Strategy for series - sequences and series, Strategy for Series Now t...

Strategy for Series Now that we have got all of our tests out of the way it's time to think regarding to the organizing all of them into a general set of strategy to help us

Counters and registers, design a synchronous, recycling, MOD-12 counter wit...

design a synchronous, recycling, MOD-12 counter with D FF''s. Use the states 0000 through 1011 in the counter.

Addition involving negative numbers, Q. Addition Involving Negative Numbers...

Q. Addition Involving Negative Numbers? Ans. When you add together positive and negative numbers, there are essentially three possibilities that you can encounter. Let's e

Taylor series, If f(x) is an infinitely differentiable function so the Tayl...

If f(x) is an infinitely differentiable function so the Taylor Series of f(x) about x=x 0 is, Recall that, f (0) (x) = f(x) f (n) (x) = nth derivative of f(x)

Example for pre-operational stage learning maths, E1) I have a three-year-o...

E1) I have a three-year-old friend. He has a lot of toy cars to play with. Playing with him once, I divided the cars into two sets. One set was more spread out and had 14 cars in i

Geometry, the segments shown could form a triangle

the segments shown could form a triangle

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd