Limits, Mathematics

Assignment Help:

Limits

The concept of a limit is fundamental in calculus. Often, we are interested to know the behavior of f(x) as the independent variable x approaches some particular point 'a'. The question is, if we give values to x which are nearer and nearer to 'a', will the values of f(x) come nearer and nearer to any particular value? Suppose we define a function f(x) as:

                            f(x) = 2x

It can be seen that as we give values to x which are nearer and nearer to 0, then the value of f(x) also comes nearer and nearer to 0.

If x approaches a value 'a', f(x) approaches some number L, then we say that the limit of f(x) approaches L. This is symbolically written as

1669_limit.png        is to be read as 'x approaches a'.

Sometimes we may allow x to take values which are larger and larger, without any limit. This is symbolically written as  1954_limit1.png (read as 'x approaches infinity'). If f(x) approaches a limit L as  1967_limit2.png , then we write

1129_limit3.png

In some cases, it may so happen that as x approaches a value, the value of the function f(x) may become larger and larger without any limit. This is symbolically written as:

21_limit4.png

Example 

Suppose f(x) = 2x2 - 1

As x approaches value 1, f(x) approaches the value 1,

739_limit5.png

This is graphically represented below.

Figure 

1862_limit6.png


Related Discussions:- Limits

Geometry, I need help in my homework

I need help in my homework

Example of making connections of a child with maths, After a lot of effort,...

After a lot of effort, 8-year-old Hari worked out 2 x 88 = 176. When asked to say what 2 x 89 was, after a lot of hard work, he produced the answer 178. How would you help him to r

The equation of the tangent, Consider the function f(x) = 2x 2 + 1. Find ...

Consider the function f(x) = 2x 2 + 1. Find the equation of the tangent to the graph of f(x) at x = 2. [NOTE: when calculating f'(2), use first principles.

Project, elliptical path of celestial bodies

elliptical path of celestial bodies

Geometry, a figure is made of a rectangle and an isosceles right triangle. ...

a figure is made of a rectangle and an isosceles right triangle. the rectangle has sides of 6 in. and 3 in. one of the short sides of the rectangle is also one of the legs of the r

Arc Length and Sector Area, how do i find the diameter of a circle if i hav...

how do i find the diameter of a circle if i have the shaded sectors area of 263.76 and the central angle of that circle is 210 degrees?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd