Limits, Mathematics

Assignment Help:

Limits

The concept of a limit is fundamental in calculus. Often, we are interested to know the behavior of f(x) as the independent variable x approaches some particular point 'a'. The question is, if we give values to x which are nearer and nearer to 'a', will the values of f(x) come nearer and nearer to any particular value? Suppose we define a function f(x) as:

                            f(x) = 2x

It can be seen that as we give values to x which are nearer and nearer to 0, then the value of f(x) also comes nearer and nearer to 0.

If x approaches a value 'a', f(x) approaches some number L, then we say that the limit of f(x) approaches L. This is symbolically written as

1669_limit.png        is to be read as 'x approaches a'.

Sometimes we may allow x to take values which are larger and larger, without any limit. This is symbolically written as  1954_limit1.png (read as 'x approaches infinity'). If f(x) approaches a limit L as  1967_limit2.png , then we write

1129_limit3.png

In some cases, it may so happen that as x approaches a value, the value of the function f(x) may become larger and larger without any limit. This is symbolically written as:

21_limit4.png

Example 

Suppose f(x) = 2x2 - 1

As x approaches value 1, f(x) approaches the value 1,

739_limit5.png

This is graphically represented below.

Figure 

1862_limit6.png


Related Discussions:- Limits

Find the distance of the journey, A train covered a certain distance at a u...

A train covered a certain distance at a uniform speed.  If the train would have been 6km/hr faster, it would have taken 4hours less than the scheduled time.   And if the train were

Permutation, explain the basics of permutation

explain the basics of permutation

Problem solving sequence: the operations, marianne took $100.00 to a store ...

marianne took $100.00 to a store that was holding a no-tax sale. she bought a shirt for $24.99, sandals for $18.50, shorts for $16.49, and a beach bag for $21.69. how much did she

Prove that one of three consecutive integers divisible by 3, Prove that one...

Prove that one of every three consecutive integers is divisible by 3. Ans: n,n+1,n+2 be three consecutive positive integers We know that n is of the form 3q, 3q +1, 3q +

Population problem - nonhomogeneous systems, The next kind of problem seems...

The next kind of problem seems as the population problem. Back in the first order modeling section we looked at several population problems. In such problems we noticed a single po

Market testing, what are the dangers of not market testing a product

what are the dangers of not market testing a product

Statistics, find the number of ways 17 employees can b chosen from 327

find the number of ways 17 employees can b chosen from 327

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd