Limit comparison test - sequences and series, Mathematics

Assignment Help:

Limit Comparison Test

Assume that we have two series ∑an and ∑bn with an, bn  ≥ 0 for all n. Determine,

444_Limit Comparison Test 1.png

If c is positive (i.e. c > 0 ) and is finite (i.e. c < ∞ ) afterwards either both series converge or both of the series diverge.

Notice that it doesn't actually matter which series term is in the numerator for this test, we could just have easily illustrated c as,

1309_Limit Comparison Test 2.png

and we would get similar results. To observe why this is, consider the subsequent two definitions.

131_Limit Comparison Test 3.png

Initiate with the first definition and rewrite it as follows, afterwards take the limit.

1240_Limit Comparison Test 4.png

Alternatively, if ?c is positive and finite then so is c‾ and if c‾ is positive and finite then so is c.  Similarly if c‾ = 0 then c = ∞ and if c‾ = ∞ then c = 0. Both of the above definitions will give similar results from the test so don't worry as regards which series terms should be in the numerator and that should be in the denominator.  Select this to make the limit easy to calculate.

As well, this really is a comparison test in some other ways.  If c is positive and finite this is saying that both of the series terms will behave in usually the same way and thus we can expect the series themselves to as well behave in an identical fashion.  If c = 0 or c = ∞ we can't say this and thus the test fails to provide any information. 

The limit in this test will frequently be written like this:

2394_Limit Comparison Test 5.png

as frequently both terms will be fractions and this will build the limit easier to deal with.


Related Discussions:- Limit comparison test - sequences and series

Determine z-scores and percentiles, Q. Determine Z-scores and Percentiles? ...

Q. Determine Z-scores and Percentiles? Ans. Z-scores help measure how far a piece of data is from the mean. More specifically, Z-scores tell how far a piece of data is fr

Example of 3-d coordinate system, Example of 3-D Coordinate System Exam...

Example of 3-D Coordinate System Example: Graph x = 3 in R, R 2 and R 3 .   Solution In R we consist of a single coordinate system and thus x=3 is a point in a 1-D co

Unit vector and zero vectors, Unit Vector and Zero Vectors Unit Vec...

Unit Vector and Zero Vectors Unit Vector Any vector along with magnitude of 1, that is || u → || = 1, is called a unit vector. Zero Vectors The vector w → = (

Volume, Rajun uses 2/3 of a carton of milk to make a pancake. The volume of...

Rajun uses 2/3 of a carton of milk to make a pancake. The volume of milk he uses is 800ml. calculate the volume, in l, of a milk in carton?

Objectives of why learn mathematics, Objectives After studying this uni...

Objectives After studying this unit, you should be able to explain how mathematics is useful in our daily lives; explain the way mathematical concepts grow; iden

Percents, If 2/3 of a number is 24 then 1/4 of a number is...

If 2/3 of a number is 24 then 1/4 of a number is...

Differentiate y = x x using implicit differentiation, Differentiate y = x ...

Differentiate y = x x Solution : We've illustrated two functions similar to this at this point. d ( x n ) /dx = nx n -1                                 d (a x ) /dx= a

#title.automotive cruise control system., What are some of the interestingm...

What are some of the interestingmodern developments in cruise control systems that contrast with comparatively basic old systems

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd