Limit comparison test - sequences and series, Mathematics

Assignment Help:

Limit Comparison Test

Assume that we have two series ∑an and ∑bn with an, bn  ≥ 0 for all n. Determine,

444_Limit Comparison Test 1.png

If c is positive (i.e. c > 0 ) and is finite (i.e. c < ∞ ) afterwards either both series converge or both of the series diverge.

Notice that it doesn't actually matter which series term is in the numerator for this test, we could just have easily illustrated c as,

1309_Limit Comparison Test 2.png

and we would get similar results. To observe why this is, consider the subsequent two definitions.

131_Limit Comparison Test 3.png

Initiate with the first definition and rewrite it as follows, afterwards take the limit.

1240_Limit Comparison Test 4.png

Alternatively, if ?c is positive and finite then so is c‾ and if c‾ is positive and finite then so is c.  Similarly if c‾ = 0 then c = ∞ and if c‾ = ∞ then c = 0. Both of the above definitions will give similar results from the test so don't worry as regards which series terms should be in the numerator and that should be in the denominator.  Select this to make the limit easy to calculate.

As well, this really is a comparison test in some other ways.  If c is positive and finite this is saying that both of the series terms will behave in usually the same way and thus we can expect the series themselves to as well behave in an identical fashion.  If c = 0 or c = ∞ we can't say this and thus the test fails to provide any information. 

The limit in this test will frequently be written like this:

2394_Limit Comparison Test 5.png

as frequently both terms will be fractions and this will build the limit easier to deal with.


Related Discussions:- Limit comparison test - sequences and series

How many solutions are there for differential equation, If a differential e...

If a differential equation does have a solution how many solutions are there? As we will see ultimately, this is possible for a differential equation to contain more than one s

Systems of linear equation, a man can row a bangka at a rate of 5 km/h in s...

a man can row a bangka at a rate of 5 km/h in still water. It takes 10 minutes longer to row upstream a distance of 2km than he takes to row downstream. What is the rate of the cur

Solve the subsequent proportion, Solve the subsequent proportion: Exa...

Solve the subsequent proportion: Example: Solve the subsequent proportion for x. Solution: 5:x = 4:15 The product of the extremes is (5)(15) = 75. The produ

Linear functions, Linear functions are of the form: y = a 0 ...

Linear functions are of the form: y = a 0 + a 1 x 1 + a 2 x 2 + ..... + a n x n where a 0 , a 1 , a 2 ..... a n are constants and x 1 , x 2 ..... x n a

How to join as maths expert, Sir, I am a Maths teacher from kolkata,India....

Sir, I am a Maths teacher from kolkata,India.i want to join your website as Maths'' expert.Please guide me as to how to join your website and earn some money. I will be really grat

Geometric mean-geometric progression, Geometric mean - It is a measure ...

Geometric mean - It is a measure of central tendency normally utilized to measure industrial increases rates. - It is explained as the nth root of the product of 'n' observa

Integerts, how do u add and subtract integers

how do u add and subtract integers

Calculas, how to deal with integration by parts

how to deal with integration by parts

How long will he have to ride to burn 750 calories, Jeff burns 500 calories...

Jeff burns 500 calories per hour bicycling. How long will he have to ride to burn 750 calories? To find out the number of hours required to burn 750 calories, divide 750 throug

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd