Limit comparison test - sequences and series, Mathematics

Assignment Help:

Limit Comparison Test

Assume that we have two series ∑an and ∑bn with an, bn  ≥ 0 for all n. Determine,

444_Limit Comparison Test 1.png

If c is positive (i.e. c > 0 ) and is finite (i.e. c < ∞ ) afterwards either both series converge or both of the series diverge.

Notice that it doesn't actually matter which series term is in the numerator for this test, we could just have easily illustrated c as,

1309_Limit Comparison Test 2.png

and we would get similar results. To observe why this is, consider the subsequent two definitions.

131_Limit Comparison Test 3.png

Initiate with the first definition and rewrite it as follows, afterwards take the limit.

1240_Limit Comparison Test 4.png

Alternatively, if ?c is positive and finite then so is c‾ and if c‾ is positive and finite then so is c.  Similarly if c‾ = 0 then c = ∞ and if c‾ = ∞ then c = 0. Both of the above definitions will give similar results from the test so don't worry as regards which series terms should be in the numerator and that should be in the denominator.  Select this to make the limit easy to calculate.

As well, this really is a comparison test in some other ways.  If c is positive and finite this is saying that both of the series terms will behave in usually the same way and thus we can expect the series themselves to as well behave in an identical fashion.  If c = 0 or c = ∞ we can't say this and thus the test fails to provide any information. 

The limit in this test will frequently be written like this:

2394_Limit Comparison Test 5.png

as frequently both terms will be fractions and this will build the limit easier to deal with.


Related Discussions:- Limit comparison test - sequences and series

Find the discount factors and linear interpolation, Question: All rates...

Question: All rates should be calculated to 3 decimal places in % (e.g. 1.234%), the discount factors to 5 decimal places (e.g. 0.98765), and the bond prices to 3 decimal place

Slope of tangent line, Slope of Tangent Line : It is the next major interp...

Slope of Tangent Line : It is the next major interpretation of the derivative. The slope of the tangent line to f ( x ) at x = a is f ′ ( a ) . Then the tangent line is given by,

F distribution or variance ratio distribution, Frequency Distribution or Va...

Frequency Distribution or Variance Ratio Distribution This was developed by R. A Fisher in 1924 and is normally defined in terms of the ratio of the variances of two usually d

Prove that cos - sin = v2 sin , If cos?+sin? = √2 cos?, prove that cos? - ...

If cos?+sin? = √2 cos?, prove that cos? - sin? =  √2 sin ?. Ans:    Cos? + Sin? =  √2 Cos? ⇒ ( Cos? + Sin?) 2  = 2Cos 2 ? ⇒ Cos 2 ? + Sin 2 ?+2Cos? Sin? = 2Cos 2 ? ⇒

Measures of central tendency-graphical method , Illustration In a soci...

Illustration In a social survey whether the main reason was to establish the intelligence quotient or IQ of resident in a provided area, the given results were acquired as tab

How many students are study physics alone, A class has 175 learners. The gi...

A class has 175 learners. The given table describes the number of learners studying one or more of the subsequent subjects in this case                 Subjects

Construction , construct of tangents a circle from an external point when ...

construct of tangents a circle from an external point when its centre is not known

Integration, Integrate ((cosx)*(sinx))/(sin(2x)) with respect to x

Integrate ((cosx)*(sinx))/(sin(2x)) with respect to x

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd