Life cycle of a product from raw materials, Other Engineering

Assignment Help:

The Task:

This project is a 50% of the whole assessment of the course. You are required to assess a life cycle of a product from raw materials, through the supply chain, manufacturing process, distribution, usage and the end-of-life stages. The product list will be available for you to select. You are required to submit a 19 page group report by Monday 27th August 2012 at 6pm in Room 402.

Objectives:

To incorporate as much as possible the concepts and theories learnt in this course into your life cycle assessment.

Sensitivity analysis is conducted to test the effects of selecting different process cases for your cradle-to-grave calculation. This is due to the fact that you may be able to use different values from the SLCA driver database for a particular process, and production alternatives such as:

  • Other available manufacturing process and/or
  • Other available transportation type and/or
  • Other available electricity type and/or
  • Other available Fuel type and/or

For example: For the "cold transforming Aluminum" process, there are two SLCA drivers that can be selected: the SLCA driver no. G3 ('Cold-transforming Al {DA}', the driver value is 0.004 pts/kg) and the SLCA driver no. G4 ('Cold-transforming Al I', the driver value is 0.0076 pts/kg) from the non-ferro manufacturing process category. Both drivers represent a cold transforming process for aluminum but they are generated from different LCI databases. Therefore, you need to show how your cradle-to-grave results will be affected if you select different drivers.

You are required to conduct the sensitivity analysis by comparing your current cradle-to-grave result with another cradle-to-grave result that uses another available driver.

IF there are more than one product information that have other available drivers, you are required to select only the single process that contributes the most to your cradle-to-grave analysis and then use an alternative SLCA driver of the selected process to conduct the sensitivity analysis.

For example, if your product information reveals that there are 2 drivers for the manufacturing process and 2 drivers for transportation in the SLCA driver lists, you should observe the relative contribution of the manufacturing process and transportation to your cradle-to grave result. If the manufacturing process contributes 10% and transportation contributes 5% to the cradle-to-grave result, you should conduct the sensitivity analysis only for the manufacturing process.

Likewise, IF there are several manufacturing processes then you should conduct the sensitivity analysis for the single manufacturing process that contributes the most to the cradle-to-grave result.

Product description: Net weight is 4.6 kg, certain materials and process are excluded.

It is used for printing paper at a small office.

Lifetime: 7 years (It is estimated that the product is discarded when no longer works.)

Frequency of use: The product consumes 20 watts during an operation of 5 hours/day, 5 days per week, 50 weeks/year. It consumes 4.6 watts when it is under a standby mode of 3 hours/day.

Logistics:

  • The metals are supplied from Sydney and transported to Japan for assemble.
  • The product is distributed to the Germany.

Assembly: The product is assembled in Japan and its assembly requires 6 MJ/kg of a product.

End of Life: The product is disposed at the disposal site. The distance to the disposal site is estimated at 100 km. The disposal routes include 85% recycling and 15% incineration for all materials.

Assumed material types and amount used are listed below.

Material type

Weight (kg)

Aluminium

0.02

Stainless steel

1.29

Copper

0.21

Cardboard

1.31

Paper

0.097

Epoxy

0.02

Glass

0.002

Magnesium

0.08

LDPE

0.04

HDPE

0.06

PS

2.83

 

Process

Unit (kg)

Injection moulding

2.88

Cast work

0.08

Blow moulding

0.06

Rolling steel

0.12

Cold transforming

8.78

Casting

0.03

Aluminium extrusion

0.02

Laminating paper

0.10

Production of cardboard

1.31


Related Discussions:- Life cycle of a product from raw materials

Auxiliary power unit oil system, Auxiliary power unit oil System: A sum...

Auxiliary power unit oil System: A sump at the bottom of the gearbox collects the returning oil, in some APU's the rear face of the sump is finned and let into the intake plenu

Thermodynamics of materials, outline five (5) areas where thermodynamics ca...

outline five (5) areas where thermodynamics can be applied in materials engineering

Communication and scholarship, Illustrate the importance of communication i...

Illustrate the importance of communication in a retail business organisation?25 marks

Summing amplifier, Summing amplifier: As the title implies, this is an ...

Summing amplifier: As the title implies, this is an adding device.  The circuit can take any number of voltage inputs, and the output voltage is simply the sum of these inputs.

Chaplets, Q. Explain the Chaplets.                                    ...

Q. Explain the Chaplets.                                                       OR  When are chaplets required in moulding practice? What is the material of the chaplets?

Rated breaking torque, Consider a 3-hp, 220-V, 1800-r/min separately excite...

Consider a 3-hp, 220-V, 1800-r/min separately excited dcmotor controlled by a single-phase fully controlled rectifierwith an ac source voltage of 230Vat 60Hz.Assume that the full-l

Controller requirements, Controller Requirements  The requirements for ...

Controller Requirements  The requirements for the stability and performance of fight control systems are specified in the certi-fication requirements for U.S. civilian aircraft

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd